丽水旺能环保能源有限公司

土壤、地下水环境自行监测报告

浙江瑞博思检测科技有限公司 2023 年 12 月

目录

1	工作礼	肾景	1
	1.2	工作依据	1
		1.2.1 法律法规与政策要求	1
		1.2.2 技术导则与技术规范	1
		1.2.3 其他技术资料	2
	1.3	工作由来	2
	1.4	工作内容及技术路线	3
2	企业概	既况	4
	2.1	企业基础信息	4
	2.2	企业用地历史等信息	5
		2.2.1 企业用地历史情况	5
		2.2.2 企业行业分类	. 10
		2.2.3 企业经营范围	. 10
	2.3	企业用地已有的环境调查与监测情况	. 10
	2.4	人员访谈情况	. 12
3	地勘覧	5料	. 13
	3.1	地质信息	. 13
		水文地质信息	
4	企业生	上产及污染防治情况	. 16
	4.1	企业生产概况	. 16
		4.1.1 项目概况	. 16
		4.1.2 生产工艺	
		4.1.3 主要生产设备、原辅材料	. 20
		4.1.4 主要污染源、污染物及治理措施	. 22
	4.2	企业总平面布置	. 24
		4.2.1 总平面布局	. 24
		4.2.2 隐蔽设施分布情况	. 28
	4.3	各重点场所、重点设施设备情况	
		4.3.1 重点场所、重点设施设备排查原则	
		4.3.2 重点场所、重点设施设备清单	
5		5测单元识别与分类	
		重点监测单元情况	
	5.2	识别/分类结果及原因	
		5.2.1 重点监测单元识别/分类原则	
		5.2.2 重点监测单元识别结果及原因	
	5.3	关注污染物	
		5.3.1 重点监测单元主要污染物	
		5.3.2 特征污染物筛选依据及结果	
6		点位布设方案	
	6.1		
		6.1.1 重点单元及相应监测点/监测井的布设原则	
		6.1.2 重点单元及相应监测点/ 监测井的布设位置及原因	
	6.2	各监测点/ 监测井监测指标及选取原因	. 41

6.2.1 监测点/ 监测井监测点位指标选取要求	41
6.2.2 各监测点/监测井监测点位指标及选取原因	42
6.2.3 测试项目检测方法	
6.2.4 测试项目评价标准	48
7 样品采集、保存、流转与制备	53
7.1 现场采样位置、数量和深度	53
7.1.1 现场采样位置	53
7.1.2 现场采样深度	54
7.1.3 现场采样数量	55
7.2 采样准备	55
7.3 采样方法及程序	57
7.3.1 土壤采样要求	57
7.3.2 地下水采集要求	60
7.4 样品保存、流转与制备	63
7.4.1 样品保存	63
7.4.2 样品流转	65
7.4.3 样品前处理	66
8 检测结果分析	67
8.1 土壤检测结果分析	67
8.1.1 土壤分析方法	67
8.1.2 2022 年土壤各点位检测结果	68
8.1.3 2023 年土壤各点位检测结果	70
8.1.4 监测结果分析	70
8.2 地下水检测结果分析	71
8.2.1 地下水分析方法	
8.2.2 2022 年各点位检测结果	72
8.2.3 2023 地下水检测结果	74
8.2.4 监测结果分析	77
9 质量保证与质量控制	78
9.1 自行监测质量体系	
9.2 监测方案制定的质量保证与控制	
9.3 样品采集、保存、流转、制备与分析的质量保证与控制	78
9.3.1 样品采集前的质量控制	78
9.3.2 样品采集过程中的质量控制	79
9.3.3 样品流转质量控制	79
9.3.4 样品制备质量控制	80
9.3.5 样品保存质量控制	80
9.3.6 实验室分析质量控制	81
10 总结论	82
10.1 监测结论	82
10.2 企业针对监测结果拟采取的主要措施及原因	82
附件	83
附件 1 检测单位资质证明	83
附件 2 2021 年土壤、地下水检测报告	84

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

附件 3 雨污管网图	105
附件 4 土壤采样钻孔记录单	
附件 5 人员访谈表	111
附件 6 专家意见	115
附件 7 专家意见修改清单	118
附件 8 2022 年土壤和地下水检测结果	120
附件 9 2023 年土壤和地下水检测结果	163
附件 10 质控报告	186

1 工作背景

1.2 工作依据

1.2.1 法律法规与政策要求

- (1)《中华人民共和国环境保护法》(2015年1月1日);
- (2) 《中华人民共和国环境影响评价法》(2016年9月1日实施,2018年12月29日第二次修正);
 - (3)《中华人民共和国大气污染防治法》(2018年10月26日修正);
 - (4)《中华人民共和国水污染防治法》(2018年1月1日);
 - (5)《中华人民共和国固体废物污染环境防治法》(2020年9月1日);
 - (6) 《土壤污染防治行动计划》(国发[2016]31号);
- (7) 《污染地块土壤环境管理办法(试行)》(环境保护部令 部令第 42 号 2016 年 12 月 31 日);
- (8)《关于保障工业企业场地再开发利用环境安全的通知》(环发 [2012] 140 号);
- (9)《工业企业场地环境调查评估与修复工作指南(试行)》(环境保护部,2014年11月);

1.2.2 技术导则与技术规范

- (1) 《建设用地土壤污染风险管控和修复术语》(HJ682-2019);
- (2) 《建设用地土壤污染状况调查技术导则》(HJ25.1-2019):
- (3)《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019);
- (4)《建设用地土壤环境调查评估技术指南》(公告 2017 年第 72 号);
- (5) 《环境影响评价技术导则土壤环境(试行)》(HJ964-2018);
- (6) 《岩土工程勘查规范》(GB50021-2017);
- (7) 《水文地质钻探规程》(DZ/T0148-2014);
- (8) 《土壤环境监测技术规范》(HJ/T166-2004);
- (9)《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ1209—2021);
- (10)《排污单位自行监测技术指南 工业固体废物和危险废物治理》(2022 年7月1日实施):

- (11)《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018);
 - (12) 《环境二噁英类监测技术规范》(HJ916-2017);
 - (13) 《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018);
 - (14)《排污许可证申请与核发技术规范 生活垃圾焚烧(HJ1039—2019)》;
 - (15) 《地下水质量标准》(GB/T14848-2017)。

1.2.3 其他技术资料

- (1) 土壤环境调查技术咨询合同书;
- (2)《丽水市生活垃圾焚烧发电项目(二期)扩建工程(先行)竣工环境保护验收监测报告》(浙江齐鑫环境检测有限公司,2022年2月):
 - (3) 丽水旺能提供的其他等相关资料。

1.3 工作由来

2016年5月28日,国务院印发的《土壤污染防治行动计划》(国发[2016]31号)(简称"土十条")中,第一条明确要求:开展土壤调查,掌握土壤环境质量状况,其中重点行业企业用地为土壤环境质量调查的重点对象,防治计划明确规定要对重点行业企业用地土壤环境质量进行重点监测和监管,防控污染。同时,《地下水污染防治实施方案》(环土壤[2019]25号)提到,持续开展地下水环境状况调查评估,加强地下水环境监管,制定并实施地下水污染防治政策及技术工程措施,推进地表水、地下水和土壤污染协同控制,综合运用法律、经济、技术和必要的行政手段,开展地下水污染防治和生态保护工作,以预防为主,坚持防治结合,推动全国地下水环境质量持续改善。2021年7月,浙江省发展和改革委员会等多部门印发了《浙江省土壤、地下水和农业农村污染防治"十四五"规划》,文件中明确表明要全面落实土壤污染重点监管单位法定义务。根据重点行业企业用地土壤污染状况调查结果,优化土壤污染重点监管单位(以下简称"重点单位")筛选原则,提高重点单位名录的精准度。2021年11月13日,生态环境部发布了《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ1209一2021),要求工业企业做好土壤及地下水自行监测工作。

丽水旺能环保能源有限公司(以下简称"丽水旺能"),按照文件要求,需开展土壤及地下水监测工作。本地块已于 2022 年 100 月编制完成《丽水旺能环保

能源有限公司土壤自行监测布点采样方案》,故浙江瑞博思检测科技有限公司(以下简称"我公司")在上述方案的基础上结合《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209—2021)以及企业实际情况的变动编制《土壤、地下水环境自行监测方案》(以下简称"方案")。2022年10月17日,我公司邀请三位专家对方案进行了审核,我公司依据审核意见对方案进行了修改,根据专家意见本监测方案已进行了认真修改和完善,可作为企业开展自行监测的依据。我公司于2022年10月26日~10月30日、2023年12月5日~12月11日根据方案的表 6.2-2,开展丽水旺能土壤、地下水采样并出具了检测报告,根据检测报告编制完成了《土壤、地下水环境自行监测报告》。

1.4 工作内容及技术路线

通过对企业用地历史调查、人员访谈及现场勘查的基础上,排查丽水旺能厂区范围内所有可能导致土壤或地下水污染的场所及设施设备,识别为重点监测单元并对其进行分类,确定企业自行监测点位及布置图,监测指标与频次,拟选取的样品采集、保存、流转、制备与分析方法,质量保证与质量控制等,工作技术路线见下图。

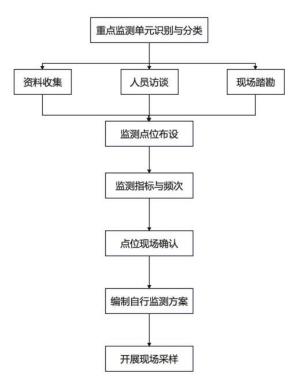


图 1.3-1 技术路线图

2 企业概况

2.1 企业基础信息

丽水旺能位于浙江省丽水市莲都区南明山街道潘田村,现生产厂区地块占地面积约33933.75m²,大门坐标:北纬28.215224°、东经119.501134°。工程主要包括垃圾卸料大厅、厨余垃圾预处理系统、垃圾焚烧系统等工序及车间建筑。

企业地理位置如图 2.1-1 所示,企业重要拐角坐标如表 2.1-1 及图 2.1-2 所示。

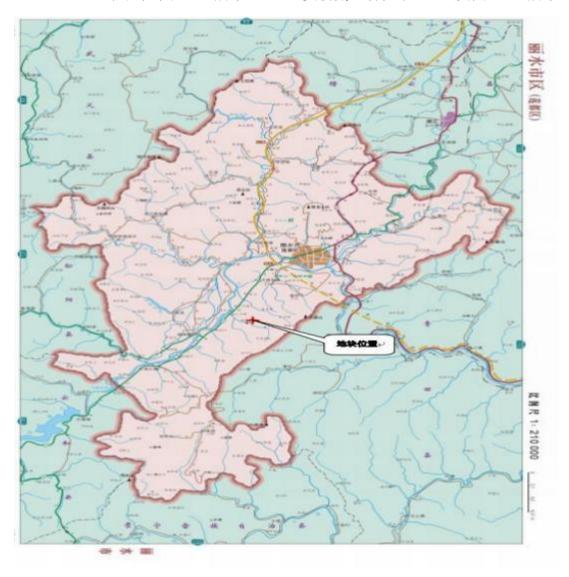


图 2.1-1 地理位置图

表 2.1-1 地块正门和重要拐角坐标

拐点代号	经度 E	纬度 N
J1	119.500767°	28.215149°
J2	119.501128°	28.214540°

Ј3	119.501907°	28.214848°
J4	J4 119.501823°	
J5	119.501482°	28.215077°
J6	119.501226°	28.215268°

图 2.1-2 地块范围图

2.2 企业用地历史等信息

2.2.1 企业用地历史情况

根据前期资料收集以及现场踏勘,该地块2010年前为山林,2010年厂区综合楼、宿舍楼先建成,2010年~2012年厂房初步建成并投入试运行,企业主要从事 D4417生物质发电。企业历史卫星照片见表2.2-1(2010年~2021年,来自 Googleearth,2008年、2022年影像来自天地图)。

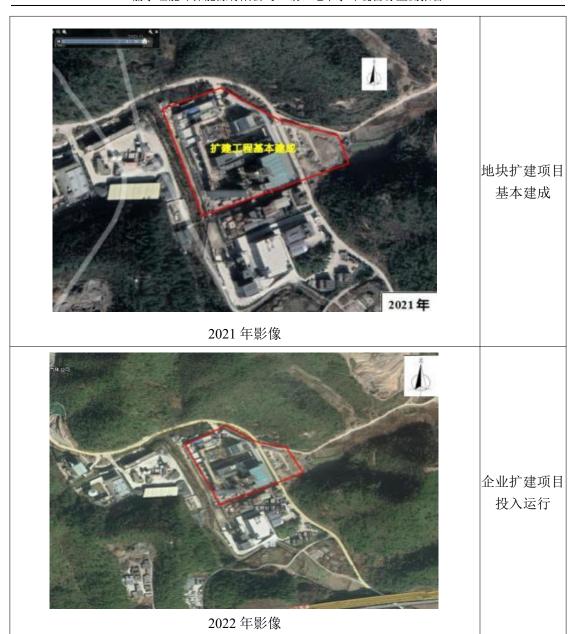

70 - 1 - MM				
时间	现生产厂区地块内用地情况			
2010 年之前 山林				
2010年 厂区综合楼、宿舍楼先建成				
2010~2012 年	生产厂房、设施建设,并投入试运行			
2012年	发现无法做到连续稳定运行			
2014年	实施改造项目			
2016年 完成改造,进行环保三同时验收,正式投产				
2016~2018 年 正常生产				

表 2.2-1 丽水旺能用地范围各时期用地情况

2018年~2021年6月 组织建设二期扩建工程 2022年2月 完成二期扩建工程先行验收,一条厨余垃圾预处理线暂未建成 未开发,主要 为农田 2008年影像 合楼、宿舍楼已建成 北侧综合楼、 宿舍楼已建 成,生产厂房 未建设 2010年 2010年影像

2.2.2 企业行业分类

丽水旺能土地范围内主要为垃圾收集、贮存、利用,对照《国民经济行业分类》(GB/T4754-2017),项目属于"D4417生物质发电"。

2.2.3 企业经营范围

丽水旺能成立于 2005 年 12 月 22 日, 注册地位于浙江省丽水市莲都区南明山街道潘田村, 法定代表人为王浩。国家企业信用信息公示系统上经营范围详见图 2.2-7。

图 2.2-7 国家企业信用信息公示系统截图

2.3 企业用地已有的环境调查与监测情况

丽水旺能于 2021 年 10 月委托浙江齐鑫环境监测有限公司进行 2021 年第三季度土壤和地下水自行检测,并根据 2021 年第三季度土壤和地下水自行检测报告(具体检测报告见附件 2),从检测结果可见,土壤的 pH 变化范围为 6.46~6.97,总体呈中性。

根据 2021 年第三季度土壤和地下水自行检测可知,土壤场地内及厂外对照点重金属和无机物类、挥发性有机物类、半挥发性有机物类、二噁英类均低于《土壤环境质量建设用地土壤污染管控指标(试行)》(GB36600-2018)中第二类用地的筛选值的限值。地下水的 pH 为中性,色度、pH、总硬度、溶解性总固体、硫酸盐、亚硝酸盐(以 N 计)、硝酸盐(以 N 计)、挥发酚、高锰酸盐指数、氟化物、

氯化物、氨氮、总大肠菌群、Hg、Cd、Pb、氰化物、砷、铬(六价)、铁、锰、细菌总数均符合《地下水质量标准》(GB/T14848-2017)IV类水质标准。

布点 区域	编号	布点位置	布点位置理由	是否为地下 水采样点	检测因子
2A	1A01, 2A01	生活垃圾库西西厂区道路绿化区域	生产区,可能出现渗透液 跑冒满漏现象	是	《土壤环境质量建设用地土壤污染风险管 控标准》(GB36600-2018) 表1中的45 项基本项目+《地下水环境质量标准》(G B/T14848-2017)表1中的37項+pH值、 石油烃、二噁英
24	1A02	焚烧烟气处理系统西面,氨水罐 区北圆绿化区域	可能出现固度跑冒淺漏、 接气沉降 造成土壤地下水 污染的区域	杏	《土壤环境质量建设用地土壤污染风险管 控标准》(GB36600-2018) 表 1 中的 45 项基本项目
2B	1B01, 2B01	渗滤液处理站东侧厂区道路旁	可能产生废水渗漏、污泥 跑冒淹漏污染影响	是	《土壤环境质量建设用地土壤污染风险管 控标准》(GB36600-2018) 表 1 中的 45 项基本项目+《地下水环境质量标准》(G BT14848-2017) 表 1 中的 37项+pH 值。 石油烃、二螺英
	200000000	渗滤液处理站西侧、厂区外绿地 旁	可能产生废水渗漏、污泥 跑冒滴漏 污染影响	香	《土壤环境质量建设用地土壤污染风险管 控标准》(GB36600-2018) 表 1 中的 45 项基本项目
地块外	1E01, 2E01	背景点	(F)	是	《土壤环境质量建设用地土壤污染风险管 控标准》(GB36600-2018)表1中的45 项基本项目+《址下水环境质量标准》(G B/T14848-2017)表1中的37项+pH值, 石油烃、二噁英

图 2.3-1 2021 年丽水旺能土壤、地下水监测点位信息

2.4 人员访谈情况

表 2.4-1 人员访谈情况整理汇总表

人员访谈表	访谈方式	访谈人员类别	访谈人员单位	访谈重要信息
本外の主義を発生 (1997年) (19	面谈	企业员工	丽水旺能环保能源有限公司	1、地块内历史上除丽水旺能不确定有无其他工业企业; 2、地块内有正规的工业固废堆放场,主要存放危险废物等; 3、无工业废水排放沟渠或渗坑、有工业废水地下输送管道或储存池; 4、有原料、油品等地下储罐或地下输送管道,未发生过化学品泄漏事故; 5、有废气排放、在线监测和治理设施; 6、有工业废水排放、在线监测。

3 地勘资料

3.1 地质信息

为了解该地块的地基土结构,本次调查引用本场地委托浙江省丽水市建筑设计研究院出具的《丽水市城市生活垃圾焚烧发电项目岩土工程勘察报告》,根据钻孔揭露,场地内主要分布有素填土、耕植土、含砾砂粘土、含粘性土圆砾、强风化砂岩、中微风化砂岩等 6 层。现自上而下分述如下:

- ①-1 素填土: 色杂,主要有灰绿-灰紫及褐黄色等,干燥,结构松散,主要成分为大块石、块石、碎石及石渣等,岩性以粉砂岩为主。该层主要分布在场区东北角 Z28-30、Z33-35、Z37-39 孔附近,层厚介于 4.4-7.5m。另外在 Z1、Z3、Z4、Z40 孔也有素填土分布,主要成分为碎块石、砼碎块及粘性土等,层厚介于0.3-0.8m。
- ①-2 耕植土: 灰黑-暗灰色,湿,软塑状,成分以粘性土为主,内含植物根茎及腐殖物,层厚介于 0.3-0.4m。
- ②-1 含砥砂粘土: 灰黄、褐黄色,湿,砾(卵)石含量 15-20%,砂粒含量 10-15%; 粘性土含量 65-70%,个别部位(如 Z29 孔附近砾砂含量极少,为质地较纯的粉质 粘土)。砾砂多被粘土包裹有胶结,可塑为主。该层分布较广,层顶标高介于 76.91-79.67m,层厚多介于 0.30-1.60m。
- ②-2 含粘性土圆砾:灰黄、褐黄色,稍湿-湿,卵石含量约占 35-40%,直径 多介于 3-10cm,个别大于 15cm,次棱-次园状为主,质硬;砾石约占 20-25%,砂以中粗砂为主,含量约占 15-20%,粘土含量约占 25-30%。砾石多被粘土及砂粒包裹并胶结,结构稍密至中密状。该层分布较广,层顶标高介于 76.21-78.58m,层厚多介于 0.30-2.20m。
- ③-1强风化砂岩:灰紫色-灰绿色,稍湿,结构中密,岩石风化呈土夹碎块或碎块状,碎块石硬度小,手折易断,干钻难钻进。该层分布广,层顶标高多介于 75.13-78.62m,但层厚很薄,多介于 0.3-0.5m,个别达 1.0m。
- ③-1 夹强风化砂岩:灰白、青灰色、稍湿、结构中密、岩芯呈碎块夹土状、碎块硬度较小、手折易断、干钻难钻进。该层仅分布在 Z55 孔附近、层厚 1.6m。
- ③-2 中微风化砂岩:浅部多呈灰紫色,深部多呈青灰或灰绿色,有些部位两者呈互层状交递出现,稍湿,岩芯多呈碎块-短柱状,岩芯表面较光滑,质地较

硬,锤击破碎后新鲜断面较锋利,节理比较发育,密度 3-6 条/米,节理面多见有泥质充填,岩层比较破碎,岩芯采取率介于 50-60%,RQD 值约 20-25%,层 顶标高多介于 74.83-78.03m,最大控制厚度为 8.20m(Z35 孔)。

各地基土土层的分布情况详见工程地质剖面图

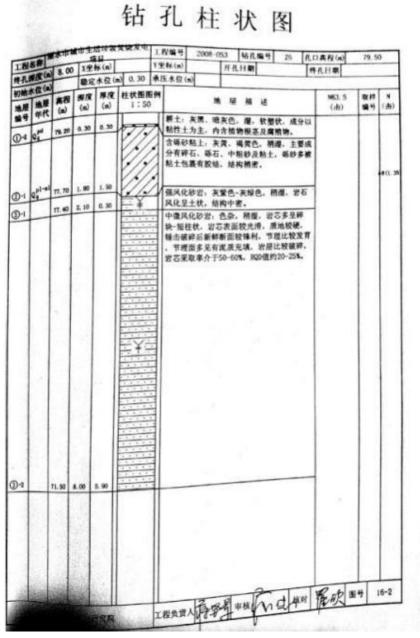


图 3.1-1 典型地质剖面图

3.2 水文地质信息

根据地勘资料及前期调查情况,场区地下水有孔隙水和风化裂隙水。孔隙水主要贮存在②-1层含砾砂粘土及②-2层含粘性土圆砾中;裂隙水主要贮存在③层风化砂岩裂隙中。总体看场区地下水水量不大,估计大口井单井出水量在

30-50T/天左右,地下水主要接受大气降水垂向渗入补给,动态与季节密切相关,估计水位年变化幅度在1.0m左右。勘察期间钻孔稳定水位埋深多介于0.20-1.20m,东北角地势高有素填土部位钻孔水位埋深介于4.80-7.70m。地下水流向图如3.2-2所示。

图 3.2-2 地下水流向图

4 企业生产及污染防治情况

4.1 企业生产概况

4.1.1 项目概况

丽水旺能成立于 2005 年 12 月,2006 年经审批通过《浙江省丽水市生活垃圾焚烧发电厂项目环境影响报告书》(环审〔2006〕618 号),该工程设计处理生活垃圾 400t/d,设两条分选线,建设 2 台 175t/d 热分解焚烧炉,配套建设 1 套 7.5MW 发电机组。但其自 2012 年建成后无法做到连续稳定运行,丽水旺能于 2014 年共投入约 315 万进行改造,改造内容为新建 1 套 400t/d 的炉排垃圾焚烧炉垃圾处理线,包括炉后烟气治理设施,改造项目建成后,原有 2 台焚烧炉同步停用拆除,于 2014 年正式投入运营,日处理生活垃圾 400t/d。企业于 2014 年 12 月委托浙江环科环境咨询有限公司编制了《丽水垃圾焚烧发电改造项目环境影响报告书》,并于 2015 年 1 月 28 日获得了原丽水市环境保护局的审批(审批文号:丽环建[2015]4 号)。该项目于 2016 年 6 月委托浙江省环境检测中心编制了"三同时"建设项目竣工环境保护验收报告并通过原丽水市环境保护局验收(审批文号:丽环验[2016]13 号)。

2018年3月1日,丽水市发展和改革委员会确定由丽水旺能负责建设和营运丽水市生活垃圾焚烧发电项目(二期)扩建工程,并出具了审批项目服务联系单(丽发改投资 201801号)。2018年11月公司委托上海环科环境评估咨询有限公司编制《丽水市生活垃圾焚烧发电项目(二期)扩建工程环境影响报告书》,2019年1月15日获得审批(丽环建[2019]7号)。二期扩建项目主要内容为:配套建设1台处理量为600t/d的机械炉排焚烧炉+1台中温中压余热锅炉+1台15MW凝汽式汽轮发电机组,同时配置2套处理量为150t/d的厨余垃圾预处理系统(厨余垃圾预处理能力共300t/d)。二期工程已于2021年6月建成投入运行,已于2022年2月完成二期工程环保竣工先行验收,其中一条厨余垃圾未建成。扩建完成后,全厂焚烧处理总规模为1000t/d。

序	-Ti → b-1b	でロ <i>りも</i>		环保批复时	验收批文时间及
号	项目名称	建设规模	处理能力	间及文号	文号
	浙江省丽水市生	设两条分选线,建设2台			
1	活垃圾焚烧发电	175t/d 热分解焚烧炉,配	处理生活垃	环审(2006)	,
1	厂项目环境影响	套建设1套7.5MW发电机	圾 400t/d	618号	/
	报告书	组			
2	丽水垃圾焚烧发 电改造项目	新建 1 套 400t/d 的炉排垃	处理生活垃	丽环建	丽环验[2016]13
		圾焚烧炉垃圾处理线,包	圾 400t/d	[2015]4 号	号(2016.8.30)
	电以起频 日	括炉后烟气治理设施	火 4001/u	[2013]4 5	5 (2010.8.30)
		扩建 1 台处理量为 600t/d			
		的机械炉排焚烧炉+1 台中	扩建处理生		
	可少于先还是每	温中压余热锅炉+1台	活垃圾		
3	丽水市生活垃圾	15MW 凝汽式汽轮发电机	600t/d, 扩建	丽环建	QX(竣)20220102
3	焚烧发电项目(二 期)扩建工程	组,同时配置2套处理量	后全厂处理	[2019]7 号	QA(数)20220102
		为 150t/d 的厨余垃圾预处	能力为		
		理系统(厨余垃圾预处理	1000t/d		
		能力共 300t/d)			

表 4.1-1 项目环境影响评价和"三同时"制度执行情况

4.1.2 生产工艺

生产工艺说明如下:

整个工艺流程包括了厨余垃圾预处理、垃圾接收及输送、焚烧及余热利用、烟气净化处理、灰渣收集处置、垃圾渗滤液处理等系统。垃圾车从物流口进入厂区,经过地磅秤称重后进入垃圾卸料大厅,卸入垃圾贮坑。生活垃圾和预处理后的厨余垃圾残渣入坑后,由全自动控制电动双梁抓斗起重机抓入炉前进料斗,垃圾进入料斗后通过料斗、溜槽由给料机推送至炉排的燃烧区域。

本项目选用可调型逆顺推往复式炉排垃圾焚烧炉,新送入的垃圾与已燃烧的垃圾在炉排的逆推作用下混合,同时进行干燥和着火过程。垃圾在炉排的1/2至2/3长度方向完成燃烧过程,一部分被推送至前部与新送入垃圾混合,另一部分向后输送。垃圾在逆推炉排上完全燃烧,燃烬后的垃圾炉渣通过出渣通道进入马丁出渣机,然后进入渣输送机至专用渣坑,再卸入炉渣运输车送综合利用。往复式炉排炉炉膛针对低热值、高水份的垃圾作了特殊设计,前后炉拱的形式(配有二次风喷嘴)和位置能使燃烧产生的高温烟气对垃圾干燥区产生强烈的热辐射,以加快垃圾的干燥和点火过程。炉膛的构造同时能加速烟气在进入锅炉之前的混合,确保烟气在进入锅炉前已完全燃烧,并保证烟气在炉膛内850C以上的高温区停留时间停留至少2秒以上,促进二噁英完全分解。助燃用空气经鼓风机由垃

圾坑上方空间引入,从而保证垃圾坑处于负压状态,臭气不会外泄。鼓风机出口空气作为一次风进入炉排下部的风箱,经炉排的通风孔进入炉膛助燃。二次风机 提供另一部分助燃空气,通过二次风管道经二次风喷嘴进入焚烧炉。

焚烧炉设有点火燃烧器,用轻柴油作为点火燃料。燃油将焚烧炉的炉料加热 至一定的温度, 满足垃圾稳定燃烧后停止使用。 贮存于垃圾贮坑的垃圾产生一定 数量的渗沥液由布置于垃圾贮坑底部的隔栅渗出,垃圾渗沥液排出后汇集于垃圾 贮坑外的污水沟内,经污水沟流至垃圾渗沥液收集池内暂时存储。同时,炉排炉 料斗的垃圾渗漏液收集后用管道送入垃圾坑内。当渗沥液收集池内渗沥液达一定 数量时,通过渗沥液泵将其抽送至厂内渗沥液处理站,垃圾渗沥液经处理达到纳 管标准后排入市政污水管网。渗沥液经过处理后产生的污泥(浓液)以及氨吹脱塔 产生的氨气,可送垃圾焚烧炉焚烧。垃圾焚烧产生热能通过余热锅炉产生蒸汽, 蒸汽推动汽轮发电机组发电,产生的电力除供本厂使用外,多余电力送入地区电 网,锅炉补给水须经除盐处理。锅炉出口的烟气进入烟气处理间,经由"SNCR(炉 内喷氨水)+半干法(石灰浆溶液)+干法(氢氧化钙干粉)+活性炭喷射+布袋除尘" 组成的烟气处理系统,将烟气中酸性气体、重金属、二噁英类和烟尘等烟气污染 物夫除达标后,通过引风机送至 120m 高烟囱高空排放。除渣系统所收集到的炉 渣,送丽水雅邦建材有限公司进行资源化利用。烟气吸附物、除尘器收集的飞灰 由气力输灰系统集中送至灰库暂存,飞灰属于危险废弃物,采用螯合剂稳定固化 方式处理满足《生活垃圾填埋场污染控制标准》(GB16889-2008)中 6.3 的要求后 运输至填埋场,按照国家规范填埋处理。具体流程见图 4.1-1

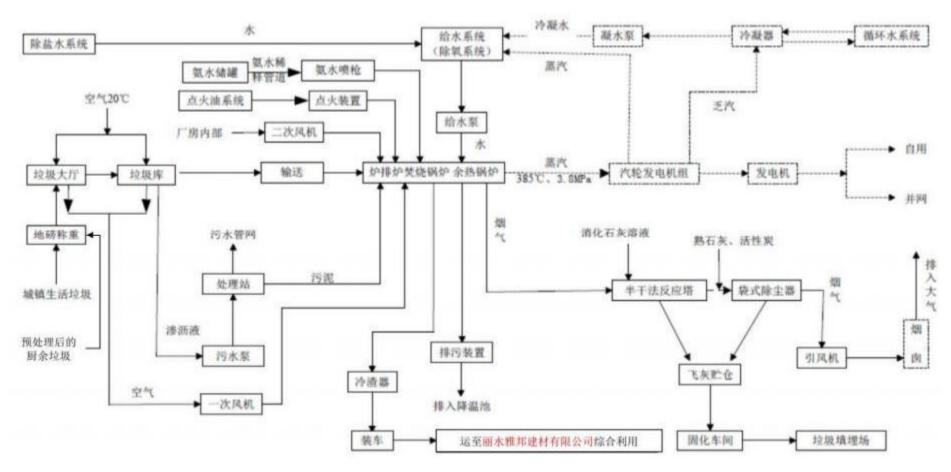


图 4.1-1 项目生产工艺流程

4.1.3 主要生产设备、原辅材料

企业现生产主要设备清单情况见下表如表 4.1-2 所示。

表 4.1-2 现主要生产设备一览表

项目	设备	数量
	焚烧炉/余热锅炉	1台
	汽轮机	1台
	发电机	1台
	汽车衡	1台
	垃圾贮坑、卸料门	6台
	全自动控制电动双梁抓斗起重机	2台
丽水垃圾焚烧发电	垃圾抓斗	2台
改造项目	出渣机	1台
	一次风机	1台
	二次风机	1台
	锅炉给水泵	2台(一备一用)
	中压除氧器	1台
	化学水制备系统	1套
	压缩空气系统	1套
	粗撕碎机	1台
	1#皮带输送机	1台
	2#进料无轴螺旋输送机	1台
	除铁器	1台
	3#进料无轴螺旋输送机	1台
	生物质分离机	1台
	4#出渣无轴螺旋输送机	1台
	5#出渣无轴螺旋输送机	1台
	6#出料无轴螺旋输送机	1台
丽水市生活垃圾焚	挤压脱水机	1台
烧发电项目(二 一 期)扩建工程	7#出渣无轴螺旋输送机	1台
777,74 22 12	除砂装置	1台
	浆料池搅拌机	1台
	浆料池输送泵	1台
	8#皮带输送机	1台
	9#皮带输送机	1台
	10#皮带输送机	1台
	11#皮带输送机	1台
	焚烧炉	1台
	余热锅炉	1台

液压装置	1套
余热锅炉输灰系统	2 台
出渣机	1台
点火燃烧器	2 台
助燃燃烧器	2 台
引风机	1台
一次风机	1台
二次风机	1台
蒸汽-空气预热器	1台
蒸汽吹灰器	1套
燃气脉冲吹灰系统	1 套
定期排污扩容器	1台
电动葫芦	2 台
汽轮机	1台
发电机	1台
凝汽器	1台
凝结水泵	2 台
汽封加热器	1台
低压加热器	1台
冷油器	1台
本体疏水膨胀箱	1台
均压箱	1台
射水抽气器	1台
空冷器	1台
辅助油泵	1台
事故交流油泵	1台
事故直流油泵	1台
主油箱	1台
给水泵	2 台
事故油箱	1台
除氧器	1台
除氧水箱	1台
慢速桥式起重机	1台

主要原辅材料消耗如表 4.1-4 所示。

表 4.1-4 原辅材料消耗情况

序号	物料名称	主要指标	消耗量(t/a)	备注
1	生活垃圾	湿重	256693	用于焚烧
2	厨余垃圾	含水	100000	预处理后用于焚烧

3	消石灰粉(氢氧 化钙)	粒度小于300目、纯度不 低于90%	4720	主要用于烟气脱硫			
4	液碱	20%	1005	用于污水处理投碱调节			
5	活性炭	粒度小于200目、纯度不 低于89%	186.68	用于烟气除二噁英和重 金属			
6	氨水	浓度20%	1696	主要用于烟气脱硝			
7	木柴	/	29.25	田工占小五田牌			
8	轻柴油	0#	164.5	用于点火及助燃			
9	螯合剂	/	299.5	用于飞灰固化			
10	盐酸	浓度30%	43	田工汽业品田			
11 硫酸		浓度50%	20	用于污水处理			

4.1.4 主要污染源、污染物及治理措施

4.1.4.1 企业三废产生情况及防治措施

1、废气

(1) 焚烧烟气

- 1)、400t/d 单炉配 1 套"SNCR+半干法反应塔+干法脱酸+活性炭吸附+布袋除尘器",烟气经处理后通过 1 根 120m 高的双筒集束式烟囱中内径 2.2m 的内筒高空排放。
- 2)、600t/d 单炉配 1 套 "SNCR(炉内喷氨水)+半干法(石灰浆溶液)+干法(氢氧化钙干粉)+活性炭喷射+布袋除尘"烟气净化系统,并预留 SCR 系统和湿法脱酸系统的场地,烟气经处理后通过 1 根 120m 高的双筒集束式烟囱中内径 2.2m 的内筒高空排放。

(2) 恶臭废气

- 1)、垃圾库房、垃圾输送系统采用全密闭防渗漏设计,垃圾库房安装自动门关启,助燃空气由一、二次风机从垃圾库上部引入,形成负压;将垃圾运输引桥改造为全密闭式,避免臭气外漏。
- 2)、配套 1 套锅炉停运时应急用等离子除臭装置,应急时恶臭引入净化并通过 15m 排气筒排放。
- 3)、渗滤液处理站(含氨吹脱塔)设引风系统引入垃圾库作为焚烧炉助燃空气。
- 4)、厨余垃圾预处理车间臭气通过轴流风机输送至垃圾库作为焚烧炉助燃空气。

(3) 粉尘

石灰粉仓、活性炭粉仓、灰库、渣库顶各配布袋除尘器和 15m 排气筒。

2、废水

(1) 垃圾渗滤液及冲洗废水

配套 1 座设计规模 400t/d 的处理站,采用"预处理+氨吹脱+UASB 厌氧反应器+MBR 生化处理系统(二级 A/O+UF 超滤)+DTRO 反渗透"处理工艺处理后纳管送丽水市水阁污水处理厂集中处理,吹脱产生的氨气和厌氧产生的沼气入炉焚烧。

(2) 净水站反冲洗水

经沉淀后进入净水站循环利用,不外排。

(3) 化水站反冲洗水、浓水

经中和沉淀后纳管排放。

(4) 锅炉排污水

经降温沉淀处理后纳管排放。

(5) 冷却水排水

采用闭式循环,排水部分回用,其余作为清下水排放。

(6) 车间地面冲洗废水

车间地面冲洗水经厂区污水处理站处理达标后纳管排放。

(7) 锅炉排污水

该废水经污水处理站处理达标后纳管排放。

(8) 厨余预处理废水

单独经厂外相邻餐厨垃圾处理厂厌氧发酵系统预处理后返回厂内渗滤液处理站处理。

(9) 生活污水

厂区生活污水经化粪池、隔油池处理达标后纳管排放。

(10) 初期雨水

设2个初期雨水收集池,初期雨水收集后纳入渗滤液处理站。

3、固废

(1) 炉渣

炉渣送丽水雅邦建材有限公司综合利用。

(2) 飞灰

经螯合剂稳定固化达标后送务岭根垃圾填埋场填埋。

(3) 铁磁类物质

收集后外运综合利用。

(4) 废滤袋、废矿物油

委托丽水市民康医疗废物处理有限公司处置。

(5) 渗滤液处理系统污泥、生活垃圾

渗滤液处理系统污泥和生活垃圾入炉焚烧。

序号 来源 主要污染物及特征 废水种类 污染物成份复杂多变、水质变化大,有机污染物浓 垃圾渗滤液(包括垃圾度高, 氨氮浓度高, 重金属离子与盐份含量高, pH 1 卸料平台) 值较低,水量波动大(BOD5、COD、SS、NH3-N、 TN, pH, Cd) 生活污水 CODCr、氨氮 2 盐分、CODCr等 3 废水 冷却排污水 4 锅炉排污水 pH、磷酸盐等 化水 RO 浓水 盐分 5 化水反冲洗水 盐分、SS 6 初期雨水 CODCr, SS CODCr, SS 8 出渣系统 9 恶臭废气 臭气浓度 重金属、二噁英、臭气浓度、氨 废气 焚烧烟气 10 粉尘 11 颗粒物 炉渣 炉渣 12 飞灰 飞灰 13 固废 14 铁磁类物质 铁磁类物质 15 废滤袋、废矿物油 废滤袋、废矿物油

表 4.1.3-1 项目"三废"产生信息一览表

4.2 企业总平面布置

4.2.1 总平面布局

丽水旺能目前正常生产运行,公司用地范围内主要功能区包括:主厂房、渗滤液处理站、办公区、氨水罐区、柴油罐区、厨余垃圾处理车间、危废仓库,企

业平面布置图及各功能区分布见图 4.2-1,各功能区使用现状见表 4.2-1,企业现场照片见表 4.2-2。

表 4.2-1 丽水旺能各功能区使用现状

序号	名称	内容			
1	焚烧车间	垃圾焚烧			
2	厨余垃圾处理车间	厨余垃圾预处理			
3	污水站	渗滤液处理			
4	点火油库	游休侠友 华州的侠友和朱绘			
5	氨水罐区	液体储存、货物的储存和传输			
6	初期雨水收集池	雨水收集			
8	危废仓库	危废暂存			
9	卸料大厅	生活垃圾卸料			
10	垃圾贮坑	生活垃圾储存			
11	办公区	办公			
12	综合泵房	各类泵储存			
13	消防水池	消防水储存			

图4.2-1 平面布置图

表 4.2-2 企业现场照片

生活垃圾库

厨余垃圾卸料坑

渗滤液处理站

厨余垃圾预处理车间

氨水罐区

锅炉

4.2.2 隐蔽设施分布情况

根据调查,企业用地范围内涉及6处隐蔽设施,分别为初期雨水收集池、渣坑、氨水罐区、垃圾贮坑、渗滤液处理站、点火油库。

4.3 各重点场所、重点设施设备情况

4.3.1 重点场所、重点设施设备排查原则

参照《重点监管单位土壤污染隐患排查指南(试行)》中表 2 确定排查重点场所或者重点设施设备清单,相关要求详见表 4.3-1。

序号	涉及工业活动	重点场所或者重点设施设备				
1	液体储存	地下储罐、接地储罐、离地储罐、废水暂存池、污水处理池、 初级雨水收集池				
2	散状液体转运与厂内运输	散装液体物料装卸、管道运输、导淋、传输泵				
3	货物的储存和传输	散装货物储存和暂存、散装货物传输、包装货物储存和暂存、 开放式装卸				
4	生产区	生产装置区				
5	其他活动区	废水排水系统、应急收集设施、车间操作活动、分析化验室、 一般工业固体废物贮存场、危险废物贮存库				

表 4.3-1 有潜在土壤污染隐患的重点场所或者重点设施设备

4.3.2 重点场所、重点设施设备清单

根据表 4.3-1 的排查标准,企业重点场所或者重点设施设备清单详见表 4.3-2。

序号	涉及工业 活动	重点场所或设施设 备	名称	占地面积(平 方)	中心经纬度坐标	备注
1	生产区	生产装置区	焚烧车间	5126	119.501272°E 28.214718°N	/
2		散装货物储存和暂 存	垃圾贮坑	998	119.501475°E 28.214805°N	深5.27m
3	货物的	散装货物储存和暂 存	垃圾卸料大厅	1180	119.501550°E 28.214841°N	/
4	储存和 传输	包装货物储存和暂 存	灰库	279	119.501305°E 28.214641°N	/
5		散装货物储存和暂 存	渣坑	74.34	119.501320°E 28.214700°N	深5.5m

表 4.3-2 企业重点场所或者重点设施设备清单

6	液体储存 、货物的 储存和传 输	接地储罐	氨水罐区	120	119.501077°E 28.214780°N	氨水输送管 道为架空输 送
7		埋地罐区	点火油库	230	119.501216°E 28.215137°N	埋地4m深, 柴油管道为 架空输送
8		初期雨水收集池	初期雨水池	134.88	119.501125°E 28.215168°N	/
9		废水暂存池、污水处 理池	渗滤液处理站	2360	119.501013°E 28.215108°N	废水收集池埋 地8m深
10	其他活 动区	车间操作活动 也活	厨余垃圾处理车 间	1127.78	119.501305°E 28.215052°N	/
11			综合车间	569.07	119.500963°E 28.214996°N	/
12		危险废物贮存库	危废暂存库	270	119.501612°E 28.214756°N	/

5 重点监测单元识别与分类

5.1 重点监测单元情况

根据现场勘查,结合厂区平面布置,本次确定重点单元情况见表 5.1-1。

序号 涉及工业活动 名称 原料名称 生产区 主厂房 1 2 垃圾贮坑 垃圾卸料大厅 3 货物的储存和传输 4 灰库 5 渣坑 氨水罐区 6 生活垃圾、柴油、 7 点火油库 氨水等 液体储存、货物的储存和传输 8 渗滤液处理站 9 初期雨水池 厨余垃圾处理车间 10 11 其他活动区 综合仓库 危废暂存库 12

表 5.1-1 重点监测单元一览表

5.2 识别/分类结果及原因

5.2.1 重点监测单元识别/分类原则

根据第 4.3 章节参照《重点监管单位土壤污染隐患排查指南(试行)》中表 2 确定排查重点场所或者重点设施设备清单,将其中可能通过渗漏、流失、扬散 等途径导致土壤或地下水污染的场所或设施设备识别为重点监测单元,开展土壤 和地下水监测工作。

重点场所或重点设施设备分布较密集的区域可统一划分为一个重点监测单元,每个重点监测单元原则上面积不大于 6400m²。重点监测单元确定后,依据表 5.2-1 所述原则对其进行分类。

单元类别	划分依据				
一类单元	内部存在隐蔽性重点设施设备的重点监测单元				
二类单元	除一单元外其他重点监测单元				
注: 隐蔽性重点设施设备,指污染发生后不能及时发现或处理的重点设施设备,如地					
半地下或接地的储罐、池体、管道等。					

表 5.2-1 重点监测单元分类表

5.2.2 重点监测单元识别结果及原因

根据前期重点场所或者重点设施设备清单及分布情况,将重点场所或者重点设施设备清单划分为4个重点监测单元,具体重点监测单元见表 5.2-2 及图 5.2-1 所示:

表 5.2-2 丽水旺能重点监测单元清单

企业名称		丽水旺能环保能源有限公司		所属行业	90 生物质发电				
	填写日期 2022.10.11		2022.10.11	填报人员		联系方式			L til.
序号	单元内需要监测 的重点场所/设 施/设备名称	占地面积	功能(即该重点场 所/设施/设备涉及 的生产活动)	涉及有毒有害物质清单	关注污染物	设施坐标 (中心点坐标)	是否为 隐蔽性 设施	单元类别 (一类/二 类)	古地
	垃圾卸料大厅	1180	货物的储存和传输		砷(砷及其化合物)(含 砷废物)、镉(镉及其	119.501550°E 28.214841°N	否		
单 元 A	危废暂存间	40		砷废物)、镉(镉及其化合物)(含镉废物)、铬(六		19.501612°E 28.214756°N	否	一类	2218
	垃圾贮坑	998		价)(六价铬化合物)、铜 (含铜废物)、铅(铅及		119.501550°E 28.214841°N	是		
	焚烧车间	5126	生产区	其化合物)(含铅废物)、 汞(汞及其化合物)(含		119.501272°E 28.214718°N	否		
単	氨水罐区	120	液体储存	汞废物)、镍(含镍废物)、 锑(锑及其化合物)、钴		119.501077°E 28.214780°N	是	. **	5504.24
元 B	灰库	274	货物的储存和传输	(钴及其化合物)、铊(铊 及其化合物)、锰(锰及		119.503010°E 28.213459°N	否	一类	5594.34
	渣坑	74.34		其化合物)、二噁英类(总 毒性当量)(多氯二苯并对		119.501320°E 28.214700°N	是		
单	渗滤液处理站	2360	液体储存	二噁英和多氯二苯并呋喃)、石油烃(C10-C40)	二苯并对二噁英和多氯 二苯并呋喃)、石油烃	119.501013°E 28.215108°N	是	. **	20/2 05
元 C	综合车间	569.07	其他活动区	((油/水、烃/水混合物或 乳化液;废矿物油与含矿	()	119.500963°E 28.214996°N	否	一类	3063.95
单元	初期雨水收集池	134.88	液体储存	物油废物)	废矿物 油与含矿物油废物)	119.501125°E 28.215168°N	是	一类	1492.66

D	点火油库	230	液体储存	119.501216°E 28.215137°N	是	
ט	厨余垃圾处理车 间	1127.78	其他活动区	119.501305°E 28.215052°N	否	

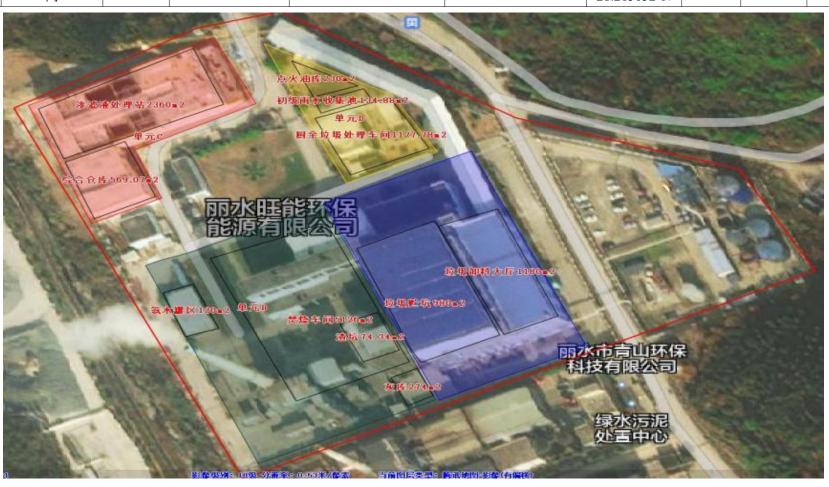


表 5.2-2 丽水旺能重点监测单元分布图

5.3 关注污染物

5.3.1 重点监测单元主要污染物

根据对企业生产历史污染源调查,重点监测单元主要污染物情况见表 5.3-1。

重点单元 序号 重点场所名称 主要污染物 识别依据 名称 垃圾卸料大厅 1 砷(砷及其化合物)(含砷废物)、 单元 A 危废暂存间 2 镉(镉及其化合物)(含镉废物)、 3 垃圾贮坑 铬(六价)(六价铬化合物)、铜(含 4 焚烧车间 铜废物)、铅(铅及其化合物)(含 氨水罐区 5 铅废物)、汞(汞及其化合物)(含生活垃圾焚烧、 单元 B 6 灰库 汞废物)、镍(含镍废物)、锑(锑渗滤液处理、柴 7 渣坑 及其化合物)、钴(钴及其化合物)。 油储存 渗滤液处理站 8 铊(铊及其化合物)、锰(锰及其化 单元 C 9 综合车间 合物)、二噁英类(总毒性当量)(多 10 初期雨水收集池 氯二苯并对二噁英和多氯二苯并呋 11 单元 D 点火油库 喃)、石油烃(C10~C40) 12 厨余垃圾处理车间

表 5.3-1 重点监测单元主要原辅料清单

5.3.2 特征污染物筛选依据及结果

5.3.2.1 特征污染物筛选依据

按照《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)规定,监测指标选取要求为:

a) 初次监测

原则上所有土壤监测点的监测指标至少应包括 GB36600 表 1 基本项目,地下水监测井的监测指标至少应包括 GB/T14848 表 1 常规指标(微生物指标、放射性指标除外)。

企业内任何重点单元涉及上述范围外的关注污染物,应根据其土壤或地下水的污染特性,将其纳入企业内所有土壤或地下水监测点的初次监测指标。

关注污染物一般包括:

- 1) 企业环境影响评价文件及其批复中确定的土壤和地下水特征因子;
- 2)排污许可证等相关管理规定或企业执行的污染物排放(控制)标准中可能对土壤或地下水产生影响的污染物指标;

- 3) 企业生产过程的原辅用料、生产工艺、中间及最终产品中可能对土壤或 地下水产生影响的,已纳入有毒有害或优先控制污染物名录的污染物指标或其他 有毒污染物指标;
 - 4) 上述污染物在土壤或地下水中转化或降解产生的污染物;
 - 5) 涉及 HJ164 附录 F 中对应行业的特征项目(仅限地下水监测)。
 - b) 后续监测

后续监测按照重点单元确定监测指标,每个重点单元对应的监测指标至少应包括:

- 1)该重点单元对应的任一土壤监测点或地下水监测井在前期监测中曾超标的污染物,受地质背景等因素影响造成超标的指标可不监测;
 - 2) 该重点单元涉及的所有关注污染物。

5.3.2.2 特征污染物筛选结果

根据表 5.3-1,丽水旺能主要污染物为砷(砷及其化合物)(含砷废物)、锅(镉及其化合物)(含镉废物)、铬(六价)(六价铬化合物)、铜(含铜废物)、铅(铅及其化合物)(含铅废物)、汞(汞及其化合物)(含汞废物)、镍(含镍废物)、锑(锑及其化合物)、钴(钴及其化合物)、铊(铊及其化合物)、锰(锰及其化合物)、二噁英类(总毒性当量)(多氯二苯并对二噁英和多氯二苯并呋喃)、石油烃(C₁₀~C₄₀)。对照《工业企业土壤和地下水自行监测技术指南(试行)》(HJ 1209-2021)中监测指标选取要求,参照有毒有害物质名录,最后结合企业实际生产情况及前期检测结果。企业特征污染物筛选后为 pH、二噁英、石油烃(C₁₀~C₄₀)。

6 监测点位布设方案

6.1 重点单元及相应监测点/监测井的布设位置

6.1.1 重点单元及相应监测点/监测井的布设原则

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021) 监测点位布设原则如下:

- (1)监测点位的布设应遵循不影响企业正常生产且不造成安全隐患与二次 污染的原则。
- (2)点位应尽量接近重点单元内存在土壤污染隐患的重点场所或重点设施设备,重点场所或重点设施设备占地面积较大时,应尽量接近该场所或设施设备内最有可能受到污染物渗漏、流失、扬散等途径影响的隐患点。
- (3)根据地勘资料,目标采样层无土壤可采或地下水埋藏条件不适宜采样 的区域,可不进行相应监测,但应在监测报告中提供地勘资料并予以说明。

6.1.2 重点单元及相应监测点/ 监测井的布设位置及原因

根据前期分析,丽水旺能重点监测单元划分为 4 个,涉及 6 处隐蔽设施,经单元划分后确定包含 4 个一类单元。按照工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)规定,相关监测点布设要求具体如下:

- 1、土壤监测点
- a) 监测点位置及数量
- 1) 一类单元
- 一类单元涉及的每个隐蔽性重点设施设备周边原则上均应布设至少 1 个深层土壤监测点,单元内部或周边还应布设至少 1 个表层土壤监测点。

2) 二类单元

每个二类单元内部或周边原则上均应布设至少 1 个表层土壤监测点,具体位置及数量可根据单元大小或单元内重点场所或重点设施设备的数量及分布等实际情况适当调整。监测点原则上应布设在土壤裸露处,并兼顾考虑设置在雨水易于汇流和积聚的区域,污染途径包含扬散的单元还应结合污染物主要沉降位置确定点位。

b) 采样深度

1) 深层土壤

深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面。下游 50m 范围内设有地下水监测井并按照本标准要求开展地下水监测的单元可不布设深层土壤监测点。

2) 表层土壤

表层土壤监测点采样深度应为 0~0.5m。

单元内部及周边 20m 范围内地面已全部采取无缝硬化或其他有效防渗措施, 无裸露土壤的,可不布设表层土壤监测点,但应在监测报告中提供相应的影像记录并予以说明。

2、地下水监测井

a) 对照点

企业原则上应布设至少1个地下水对照点。

对照点布设在企业用地地下水流向上游处,与污染物监测井设置在同一含水层,并应尽量保证不受自行监测企业生产过程影响。

临近河流、湖泊和海洋等地下水流向可能发生季节性变化的区域可根据流向变化适当增加对照点数量。

b) 监测井位置及数量

每个重点单元对应的地下水监测井不应少于1个。每个企业地下水监测井(含对照点)总数原则上不应少于3个,且尽量避免在同一直线上。

应根据重点单元内重点场所或重点设施设备的数量及分布确定该单元对应 地下水监测井的位置和数量,监测井应布设在污染物运移路径的下游方向,原则 上井的位置和数量应能捕捉到该单元内所有重点场所或重点设施设备可能产生 的地下水污染。

地面已采取了符合 HJ610 和 HJ964 相关防渗技术要求的重点场所或重点设施设备可适当减少其所在单元内监测井数量,但不得少于 1 个监测井。

c) 采样深度

自行监测原则上只调查潜水。涉及地下取水的企业应考虑增加取水层监测。 根据企业历史使用情况及现场踏勘所得现场实际污染程度,丽水旺能 4 个重点单元监测点/监测井布设如下(表 6.1-1,图 6.1-1)。

表 6.1-1 采样点布置一览表

重点单元	编号	布点位置	布设原因	点位坐标	是否为地下 水采样点	单元 类别	单元面积 (m²)
	S1/W1	垃圾卸料大厅东南侧	位于垃圾贮坑附近,垃圾存放期间可能存 在滴漏等现象污染土壤、地下水	119.503124° E 28.213502° N	是		
単元 A	B1	垃圾贮坑东南侧	位于垃圾卸料平台附近,垃圾卸料过程中 可能存在滴漏等现象污染土壤	119.50321° E 28.21360° N	否	一类	2218
S2/W2		氨水罐区东北侧	隐蔽设施附近,氨水贮存过程中可能存在 滴漏等现象污染土壤、地下水	119.502673° E 28.213560° N	是	一类	5594.34
単元 B	B2	B2 焚烧车间西南侧	位于主厂房附近,生产过程中可能存在滴 漏等现象污染土壤	119.502772° E 28.213701° N	否	一矢	3394.34
単元 C	S3/W3	渗滤液处理站南侧	隐蔽设施附近,污水处理过程中可能存在 滴漏等现象污染土壤、地下水	119.502765° E 28.213956° N	是	一类	3063.95
平元 C	В3	渗滤液处理站北侧	隐蔽设施附近,污水处理过程中可能存在 滴漏等现象污染土壤	119.502772° E 28.213831° N	否	大	3003.93
× - p	S4/W4	厨余垃圾处理车间东 侧	隐蔽设施附近,柴油运输、储存过程中可 能存在滴漏等现象污染土壤、地下水	119.502852° E 28.213908° N	是	A V	1402.66
単元 D	B4	点火车间西侧	位于厨余垃圾处理车间附近,生产期间可 能存在危废滴漏等现象污染土壤	119.503012° E ,28.213863° N	否	一类	1492.66
土壤、地 下水对照 点	下水对照 S0/W0 地下水流向上游		清洁土壤位置,位于地下水河流上游,且 不受企业生产过程影响	119.710521° E 29.872811° N	是	/	/

注: "B"表示表层土采样点位, "S"表示深层土采样点位"W"表示地下水采样点位。点位前提在不影响企业正常工作情况下布设,若现场采样过程中突遇点位需调整移动的情况,可在原点位就近 5 米以内寻找合适点位(根据地下水流向、染物迁移等情况判断)钻孔。

图 6.1-1 监测点位示意图

6.2 各监测点/ 监测井监测指标及选取原因

6.2.1 监测点/ 监测井监测点位指标选取要求

按照《工业企业土壤和地下水自行监测技术指南(试行)》(HJ 1209-2021)规定,监测指标选取要求为:

a)初次监测

原则上所有土壤监测点的监测指标至少应包括 GB36600 表 1 基本项目,地下水监测井的监测指标至少应包括 GB/T14848 表 1 常规指标(微生物指标、放射性指标除外)。

企业内任何重点单元涉及上述范围外的关注污染物,应根据其土壤或地下水的污染特性,将其纳入企业内所有土壤或地下水监测点的初次监测指标。

关注污染物一般包括:

- 1) 企业环境影响评价文件及其批复中确定的土壤和地下水特征因子;
- 2)排污许可证等相关管理规定或企业执行的污染物排放(控制)标准中可能对土壤或地下水产生影响的污染物指标;
- 3) 企业生产过程的原辅用料、生产工艺、中间及最终产品中可能对土壤或 地下水产生影响的,已纳入有毒有害或优先控制污染物名录的污染物指标或其他 有毒污染物指标:
 - 4)上述污染物在土壤或地下水中转化或降解产生的污染物;
 - 5) 涉及 HJ164 附录 F 中对应行业的特征项目(仅限地下水监测)。
 - b) 后续监测

后续监测按照重点单元确定监测指标,每个重点单元对应的监测指标至少应包括:

- 1)该重点单元对应的任一土壤监测点或地下水监测井在前期监测中曾超标的污染物,超标的判定参见本标准,受地质背景等因素影响造成超标的指标可不监测;
 - 2) 该重点单元涉及的所有关注污染物。

6.2.2 各监测点/监测井监测点位指标及选取原因

- 1、根据 5.3.2.2 特征污染物筛选结果,确定企业的特征污染物为: pH、二噁 英、石油烃。
- 2、根据《土壤环境质量建设用地土壤污染风险管控标准(试行)》要求, 土壤样品分析测试项目为《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)表1中规定的45项基本项目为必测项目。
- 3、地下水样品分析测试项目包括 GB/T14848 表 1 常规指标(放射性指标除外),另需增加涉及 HJ164 附录 F 中对应行业的特征项目。

综上所述,丽水旺能土壤和地下水各监测点/监测井监测点位指标详见表 6.2-2。

表 6.2-2 丽水旺能土壤、地下水初次监测方案一览表

重点单元	布点编号	分析项目	监测频次	采样深度	备注
单元 A	B1	pH、砷、镉、铬(六价)、铜、铅、汞、镍、锑、钴、铊、锰、四氯			
单元 B	B2	化碳、氟化物、氯仿、氯甲烷、二氯甲烷、1,1-二氯乙烷、1,1-二氯乙	1 次/年	0∼0.5 m	表层样
单元 C	В3	烯、1,2-二氯乙烷、顺-1,2二氯乙烯、反-1,2-二氯乙烯、1,1,1,2-四氯乙	1 1/// #-	0 ° ° 0.3 III	水 /云件
单元 D	B4	烷、1,1,2,2-四氯乙烷、1,2-二氯丙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-			
单元 A	S1	三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、甲苯、乙苯、间		6	
单元 B	S2	&对-二甲苯、邻-二甲苯、苯乙烯、氯苯、1,2-二氯苯、1,4-二氯苯、		6m	
单元 C	S3	硝基苯、苯胺、2-氯苯酚、萘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、	1次/3年	9m	深层样
单元 D	S4	苯并(a)芘、二苯并(a,h)蒽、茚并(1,2,3-cd)芘、䓛、石油烃(C_{10} - C_{40})、		C 11.0	
对照点	S0	二噁英类		6m	
単元 A	W1	色度、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、			
单元 B	W3	硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活		 地下水位线	
单元 C	W2	性剂、耗氧量、氨氮、硫化物、钠、亚硝酸盐、硝酸盐、氰化物、氟	1 次/年	附近 50cm	地下水
単元 D	W4	化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯	1 1/// #	范围内	地广小
对照点	W0	化碳、苯、甲苯、总磷、总铬、铍、锑、钴、铊、镍、总大肠菌群、 菌落总数、pH、石油烃(C ₁₀ ~C ₄₀)、二噁英类(只测第一年)		4 G Tri k 1	

表 6.2-3 丽水旺能土壤、地下水后续监测方案一览表

重点单元	布点编号	分析项目	监测频次	采样深度	备注
単元 A	B1				
单元 B	B2	1、初次监测中曾超标的污染物	1 次/年	0∼0.5 m	
单元 C	В3	2、特征污染物: pH、二噁英、石油烃(C ₁₀ ~C ₄₀)	1 伙牛	0,~0.3 m	农坛件
単元 D	B4				
单元 B	S1	1、初次监测中曾超标的污染物	3 次/年	6.00	深层样
单元 D	S2	2、特征污染物: pH、二噁英、石油烃(C10~C40)	3 (八牛	6m	

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

単元 E	S3	3、关注污染物: 砷、镉、铬(六价)、铜、铅、汞、镍、锑、钴、锰			
对照点	S0				
単元 A	W1				
単元 B	W2	1、初次监测中曾超标的污染物		地下水位线	
单元 C	W3	2、特征污染物: pH、石油烃(C ₁₀ ~C ₄₀)	1 次/年	附近 50cm	地下水
单元 D	W4	3、关注污染物: 砷、镉、铬(六价)、铜、铅、汞、镍、锑、钴、锰		范围内	
对照点	W0				
说明:如果企业生产项目发生变化,应重新编制土壤和地下水自行监测方案。					

6.2.3 测试项目检测方法

本项目采集的土壤和地下水样品运送至指定实验室进行样品制备并分析,实验室资质应满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)和《全国土壤污染状况详查地下水样品分析测试方法技术规定》、美国 EPA 方法集中推荐的分析方法或其资质认定范围内的国家标准、区域标准、行业标准及国际标准方法,不得使用其他非标方法或实验室自制方法,出具的检测报告应加盖实验室资质认定标识。土壤、地下水分析测试方法及检出限分别见表 6.2-3、表 6.2-4。

表 6.2-3 土壤样品分析测试方法

序号	检测项目	检测依据	检出限
1	2-氯酚		0.06mg/kg
2	硝基苯		0.09mg/kg
3	萘		0.09 mg/kg
4	苯并(a)蒽		0.1 mg/kg
5	薜	土壤和沉积物 半挥发性有机物的测定 气相	0.1 mg/kg
6	苯并(b)荧蒽	色谱-质谱法 HJ 834-2017	0.2 mg/kg
7	苯并(k)荧蒽		0.1 mg/kg
8	苯并(a)芘		0.1 mg/kg
9	茚并(1,2,3-cd)芘		0.1 mg/kg
10	二苯并(ah)蒽		0.1 mg/kg
11	苯胺(半挥发性有机物) 危险废物鉴别标准 浸出毒性鉴别		0.03mg/kg
11	本版(十)千次正行机场)	GB 5085.3-2007 附录 K	0.03111g/kg
12	氯甲烷		1.0μg/kg
13	氯乙烯		1.0μg/kg
14	1,1-二氯乙烯		1.0μg/kg
15	二氯甲烷		1.5µg/kg
16	反式-1,2-二氯乙烯		1.4μg/kg
17	1,1-二氯乙烷	土壤和沉积物 挥发性有机物的的测定 吹扫	$1.2 \mu g/kg$
18	顺式 1,2-二氯乙烯	捕集气相色谱-质谱法	1.3µg/kg
19	氯仿	HJ 605-2011	1.1μg/kg
20	1,1,1-三氯乙烷	113 003-2011	1.3µg/kg
21	四氯化碳		1.3µg/kg
22	苯		1.9µg/kg
23	1,2-二氯乙烷		1.3µg/kg
24	三氯乙烯		1.2μg/kg
25	1,2-二氯丙烷		1.1µg/kg

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

26		11177年118-1-1	木肥你有限公司工法、地下小环境日11 血侧111口	
28 四氯乙烯 29 氯苯 30 1,1,1,2-四氯乙烷 31 乙苯 32 何,对一甲苯 33 邻一甲苯 34 苯乙烯 35 1,1,2,2四氯乙烷 36 1,2,3-三氯丙烷 37 1,4-二氯苯 38 1,2-二氯苯 39 铜	26	甲苯		$1.3 \mu g/kg$
1.2 1.2	27	1,1,2-三氯乙烷		1.2μg/kg
30	28	四氯乙烯		$1.4 \mu g/kg$
31 乙素 1.2µg/kg 1.5µg/kg 1.5µg/kg 0.5 mg/kg 2 mg/k	29	氯苯		1.2μg/kg
32	30	1,1,1,2-四氯乙烷		1.2μg/kg
33 第-二甲苯 34 苯乙烯 35 1,1,2,2-四氯乙烷 36 1,2,3-三氯丙烷 37 1,4-二氯苯 38 1,2-二氯苯 39 40 41 41 42 42 43 44 42 43 44 44	31	乙苯		1.2µg/kg
34 苯乙烯 35 1,1,2,2-四氯乙烷 36 1,2,3-三氯丙烷 37 1,4-二氯苯 38 1,2-二氯苯 39 40 40 41 41 42 42 43 44 44 47 44 47 47 48 48	32	间,对-二甲苯		1.2μg/kg
35	33	邻-二甲苯		1.2μg/kg
1.2,3-三氯丙烷 37	34	苯乙烯		1.1µg/kg
1.4-二氣苯 1.5µg/kg 1.5µg/kg	35	1,1,2,2-四氯乙烷		1.2μg/kg
38	36	1,2,3-三氯丙烷		1.2μg/kg
39 铜	37	1,4-二氯苯		1.5µg/kg
40 镍 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016 2 mg/kg 2 mg/kg 0.07mg/kg 42 镉 土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019 0.5mg/kg 43 六价铬 土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019 0.5mg/kg 44 汞 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总砷的测定 GB/T22105.1-2008 0.002 mg/kg 45 砷 土壤 PH 值的测定 电位法 HJ 962-2018 / 46 pH 土壤 PH 值的测定 电位法 HJ 962-2018 / 47 二噁英类 土壤和沉积物 二噁英类的测定 同位素 稀释高分辨气相色谱高分辨质谱法 HJ77.4-2008 0.05 ng/kg 48 石油烃 (C10-C40) 土壤和沉积物 石油烃 (C10-C40) 的测定 气相色谱法 HJ 1021-2019 6mg/kg 49 钻 土壤和沉积物 石油烃 (C10-C40) 的测定 气相色谱法 (C10-C40) 所测定 大技术规定》(环办土壤商[2017] 1625 号) 0.007 50 铬 土壤样品无机项目测试方法电感耦合等离子体质谱法《全体质谱法《介办土壤商[2017]1625 号) 0.4 51 锑 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01 51 锑 上壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01	38	1,2-二氯苯		1.5µg/kg
40 镍 41 铅 42 镉 43 六价铬 土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019 0.5mg/kg 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定 GB/T 22105.1-2008 0.002 mg/kg 45 砷 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分: 土壤中总砷的测定 GB/T 22105.2-2008 0.01 mg/kg 46 pH 土壤和沉积物 二噁英类的测定 同位素 稀释高分辨气相色谱·高分辨质谱法 HJ77.4-2008 / 47 二噁英类 土壤和沉积物 二噁英类的测定 同位素 稀释高分辨气相色谱·高分辨质谱法 HJ77.4-2008 0.05 ng/kg 48 石油烃 (C10-C40) 土壤和沉积物 石油烃 (C10-C40) 的测定 气相色谱法 HJ 1021-2019 6mg/kg 49 钴 由主壤污染状况详查土壤样品分析测试方法 技术规定》 (环办土壤函[2017] 1625 号) 0.007 50 铬 土壤样品无机项目测试方法电感耦合等离子体质谱法《全体质谱法《环办土壤函[2017]1625 号) 0.4 51 锑 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01 51 锑 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01	39	铜		0.5 mg/kg
41 铅 42 镉 43 六价铬 土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019 0.5mg/kg 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定 GB/T 22105.1-2008 0.002 mg/kg 45 砷 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分: 土壤中总砷的测定 GB/T 22105.2-2008 0.01 mg/kg 46 pH 土壤和沉积物 二噁英类的测定 同位素 稀释高分辨气相色谱-高分辨质谱法 HJ77.4-2008 / 47 二噁英类 1块 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40	镍	,,,,,,,,,,	2 mg/kg
42 領	41	铅		2 mg/kg
名類	42	镉	- HJ 803-2016	0.07mg/kg
注験	43	六价铬		0.5mg/kg
22105.2-2008	44	汞	法 第1部分: 土壤中总汞的测定 GB/T	0.002 mg/kg
47 二噁英类 土壤和沉积物 二噁英类的测定 同位素 稀释 高分辨气相色谱-高分辨质谱法 HJ77.4-2008 0.05 ng/kg 48 石油烃 (C10-C40) 土壤和沉积物 石油烃 (C10-C40) 的测定 气相色谱法 HJ 1021-2019 6mg/kg 49 钴 国土壤污染状况详查土壤样品分析测试方法 技术规定》 (环办土壤函[2017] 1625 号) 0.007 50 铬 土壤样品无机项目测试方法电感耦合等离子体质谱法(环办土壤函[2017]1625 号) 0.4 51 锑 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01 6mg/kg 0.007 0.007 50 4 1 1 0.007 0.01 50 5 0.01 0.01 0.01 0.01 0.01	45	砷	法 第2部分: 土壤中总砷的测定 GB/T	0.01 mg/kg
1	46	рН	土壤 pH 值的测定 电位法 HJ 962-2018	/
48 石油烃 (C ₁₀ -C ₄₀) 土壤和沉积物 石油烃 (C10-C40)的测定 气相色谱法 HJ 1021-2019 6mg/kg 49 销等金属的测定电感耦合等离子体质谱法《全国土壤污染状况详查土壤样品分析测试方法技术规定》 (环办土壤函[2017] 1625 号) 0.007 50 各 土壤样品无机项目测试方法电感耦合等离子体质谱法《环办土壤函[2017]1625 号) 0.4 51 锑 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01 6mg/kg 49 白油等金属的测定电感耦合等离子体质谱法《全	47	二噁英类		0.05 ng/kg
49 钴 国土壤污染状况详查土壤样品分析测试方法 技术规定》(环办土壤函[2017] 1625 号) 0.007 50 铬 土壤样品无机项目测试方法电感耦合等离子体质谱法(环办土壤函[2017]1625 号) 0.4 51 锑 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法 HJ 680-2013 0.01 6 被消解/原子荧光法 HJ 680-2013 0.01	48	石油烃(C ₁₀ -C ₄₀)	土壤和沉积物 石油烃(C10-C40)的测定 气	6mg/kg
50	49	钴	国土壤污染状况详查土壤样品分析测试方法	0.007
51	50	铬		0.4
	51	锑		0.01
52 電 国土壤污染状况详查土壤样品分析测试方法 0.02 技术规定》 (环办土壤函[2017] 1625 号)	52	铊	国土壤污染状况详查土壤样品分析测试方法	0.02
52 中咸鉀△笙商乙休告针业湴注《夕田土塘污 5	53	锰	电感耦合等离子体发射光谱法《全国土壤污	5

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

染状况详查土壤样品分析测试方法技术规定》	
(环办土壤函[2017] 1625 号)	

表 6.2-4 地下水样品分析测试方法

序号	检测项目	检测依据	检出限	
1	pH 值	水质 pH 值的测定 玻璃电极法	/	
	力, 床	GB/T 6920-1986	7 PF	
2	色度	水质 色度的测定 GB/T 11903-1989	5度	
3	浊度	水质 浊度的测定 浊度计法 HJ 1075-2019	0.3NTU	
4	总硬度	水质 钙和镁总量的测定 EDTA 滴定法	/	
		GB/T7477-1987		
5	溶解性固体总量	地下水质检验方法	/	
		溶解性固体总量的测定 DZ/T 0064.9-1993		
6	阴离子表面活性剂	水质 阴离子表面活性剂的测定	0.05 mg/L	
	1941-9-4 - Memilia 12914	亚甲蓝分光光度法 GB/T 7494-1987		
7	氨氮	水质 氨氮的测定	0.025 mg/L	
,		纳氏试剂分光光度法 HJ 535-2009	0.020 mg/L	
8	铁		$0.82 \mu g/L$	
9	锰		$0.12 \mu g/L$	
10	铜	水质 65 种元素的测定	$0.08 \mu g/L$	
11	锌	电感耦合等离子体质谱法	$0.67 \mu g/L$	
12	铝	НЈ 700-2014	$1.15 \mu g/L$	
14	镉		$0.05 \mu g/L$	
15	铅		$0.09 \mu g/L$	
16	高锰酸盐指数	水质 高锰酸盐指数的测定 GB/T 11892-1989	0.5 mg/L	
17	硫化物	水质 硫化物的测定 GB/T 16489-1996	$0.005~\mathrm{mg/L}$	
18	硝酸盐(以N计)	水质 无机阴离子(F-、Cl-、NO ₂ -、Br-、NO ₃ -、	0.004 mg/L	
19	硫酸盐	PO ₄ ³⁻ 、SO ₃ ²⁻ 、SO ₄ ²⁻)的测定 离子色谱法	0.018 mg/L	
20	氯化物	НЈ 84-2016	$0.007~\mathrm{mg/L}$	
21	亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	0.003 mg/L	
22	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度 法 GB/T 7467-1987	0.004 mg/L	
23	挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 503-2009	0.0003 mg/L	
24	汞	水质 汞 砷 硒 铋 锑的测定	0.04μg/L	
25	砷	原子荧光法 HJ694-2014	0.3μg/L	
26	n自 ≠n n+:	生活饮用水标准检验方法	/	
26	嗅和味	感官性状和物理指标 GB/T 5750.4-2006	/	
27	内田司田姗	生活饮用水标准检验方法	,	
27	肉眼可见物	感官性状和物理指标 GB/T 5750.4-2006	/	
28	钠	水质 可溶性阳离子(Li+、Na+、NH4+、K+、	0.02mg/L	

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

1111/14 6477 1101			
氰化物	水质 氰化物的测定 容量法和分光光度法	0.004mg/L	
H(101/3	НЈ 484-2009	0.00 mg/L	
	水质 无机阴离子(F-、Cl-、NO ²⁻ 、Br-、NO ³⁻ 、		
氟化物	PO ₄ ³⁻ 、SO ₃ ²⁻ 、SO ₄ ²⁻)的测定	0.006mg/L	
	离子色谱法 HJ 84-2016		
Title () to the	生活饮用水标准检验方法 无机非金属指标	1 /T	
碘化物	GB/T 5750.5-2006	1μg/L	
**T*	水质 汞、砷、硒、铋和锑的测定		
4四	原子荧光法 HJ 694-2014	$0.4 \mu g/L$	
三氯甲烷		1.4µg/L	
四氯化碳	水质 挥发性有机物的测定	1.5µg/L	
苯	吹扫捕集/气相色谱-质谱法 HJ 639-2012	1.4µg/L	
甲苯		1.4µg/L	
W - W	水质 总磷的测定 钼酸铵分光光度法		
总磷	GB/T 11893-1989	0.01mg/L	
总铬		4.75μg/L	
铍	生活饮用水标准检验方法 金属指标	0.05μg/L	
钡	GB/T 5750.6-2006 (ICP)	0.25μg/L	
镍		1.5μg/L	
总大肠菌群	生活饮用水标准检验方法 微生物指标	/	
菌落总数	GB/T 5750.12-2006	/	
丁油以(C - C)	水质 可萃取性石油烃(C10~C40)的测定	0.01/I	
有細烃(C10~C40)	气相色谱法 HJ894-2017	0.01mg/L	
一個基	水质 二噁英类的测定 同位素稀释高分辨气	0.1/T	
一""	相色谱-高分辨质谱法 HJ77.1-2008	0.1pg/L	
钴	水质 65 种元素的测定电感耦合等离子体	0.03 μ g/L	
铬	水质 65 种元素的测定电感耦合等离子体	0.11 μ g/L	
锑	水质汞、砷、硒、铋和锑的测定原子荧 光	0.2 μ g/L	
铊	水质 65 种元素的测定电感耦合等离子体	0.02 μ g/L	
锰	水质 65 种元素的测定电感耦合等离子体	0.12 μ g/L	
	氰化物 氟化物 碘化物 碘化物 三四苯甲总总镀钡镍肠总数 大落 C10~C40) 二等 钴铬锑铊	# RJ 484-2009 ***********************************	

6.2.4 测试项目评价标准

6.2.4.1 土壤评价标准

《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中建设用地可划分为两类,第一类用地包括 GB50137 规定的城市建设用地中的居住用地(R),公共管理与公共服务用地中的中小学用地(A33)、医疗卫生用地(A5)和社会福利设施用地(A6),以及公园绿地(G1)中的社区公园或

儿童公园用地等;第二类用地包括 GB50137 规定的城市建设用地中的工业用地 (M),物流仓储用地(W),商业服务业设施用地(B),道路与交通设施用地(S),公共设施用地(U),公共管理与公共服务用地(A)(A33、A5、A6 除外),以及绿地与广场用地(G)(G1 中社区公园或儿童公园用地除外)等。

企业用地为工业用地,根据《土壤环境质量建设用地土壤污染风险管控标准》 (GB36600-2018)中规定工业用地属于第二类用地,因此土壤监测因子质量标准执行《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。企业土壤监测结果评价标准见表 6.2-5。

表 6.2-5 土壤筛选值(单位: mg/kg)

序号	检测项目	评价标准(mg/kg)	标准来源
1	镉	65	
2	汞	38	
3	砷	60	
4	铜	18000	
5	镍	900	
6	铅	800	
7	六价铬	5.7	
8	рН	/	
9	四氯化碳	2.8	
10	氯仿	0.9	
11	氯甲烷	37	
12	二氯甲烷	616	
13	1,1-二氯乙烷	9	
14	1,1-二氯乙烯	66	
15	1,2-二氯乙烷	5	
16	顺-1,2 二氯乙烯	596	
17	反-1,2-二氯乙烯	54	《土壤环境质
18	1,1,1,2-四氯乙烷	10	量 建设用地土
19	1,1,2,2-四氯乙烷	6.8	壤污染风险管
20	1,2-二氯丙烷	5	控标准(试行)》
21	四氯乙烯	53	(GB36600-2018)
22	1,1,1-三氯乙烷	840	中第二类质量
23	1,1,2-三氯乙烷	2.8	标准
24	三氯乙烯	2.8	
25	1,2,3-三氯丙烷	2.8	
26	氯乙烯	0.43	
27	苯	4	
28	甲苯	1200	
29	乙苯	28	
30	间&对-二甲苯	570	
31	邻-二甲苯	640	
32	苯乙烯	1290	
33	氯苯	270	
34	1,2-二氯苯	560	
35	1,4-二氯苯	20	
36	硝基苯	76	
37	苯胺	260	
38	2-氯苯酚	2256	
39	萘	70	

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

序号	检测项目	评价标准(mg/kg)	标准来源
40	苯并(a)蒽	15	
41	苯并(b)荧蒽	15	
42	苯并(k)荧蒽	151	
43	苯并(a)芘	1.5	
44	二苯并(a,h)蒽	1.5	
45	茚并(1,2,3-cd)芘	15	
46	薜	1293	
47	二噁英类	4×10 ⁻⁵	
48	石油烃 (C ₁₀ ~C ₄₀)	4500	
49	钴	70	
50	铬	5.7	
51	锑	180	
52	铊	/	
53	锰	/	

6.2.4.2 地下水评价标准

项目所在地地下水监测因子执行《地下水质量标准》(GB/T14848-2017)中的IV类质量标准,其中石油烃(C10~C40)指标参照《上海市建设用地地下水污染风险管控筛选值补充指标》中的第二类用地筛选值;总铬指标参照六价铬指标;总磷指标参照《地表水环境质量标准》(GB3838-2002)。

表 6.2-6 地下水筛选值

序号	检测项目	评价标准	标准来源
1	色(铂钴色度单位)	≤25	
2	嗅和味	无	
3	浑浊度/NTUa	≤10	
4	肉眼可见物	无	
5		5.5~6.5	
3	рН	8.5~9.0	
6	总硬度(以 CaCO ₃ 计)/(mg/L)	≤650	
7	溶解性总固体/(mg/L)	≤2000	《地下水质量标准》 (CD/T14848 2017)
8	硫酸盐/(mg/L)	≤350	(GB/T14848-2017) 中的IV类质量标准
9	氯化物/(mg/L)	≤350	一中的10天灰里你在
10	铁/(mg/L)	≤2.0	
11	锰/ (mg/L)	≤1.50	
12	铜/(mg/L)	≤1.50	
13	锌/ (mg/L)	≤5.00	
14	铝/ (mg/L)	≤0.50	
15	挥发性酚类(以苯酚计)/(mg/L)	≤0.01	

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

	M	1	
序号	检测项目	评价标准	标准来源
16	阴离子表面活性剂/(mg/L)	≤0.3	
17	耗氧量(COD _{Mn} 法,以O ₂ 计)/(mg/L)	≤10.0	
18	氨氮 (以 N 计) / (mg/L)	≤1.50	
19	硫化物/(mg/L)	≤0. 10	
20	钠/(mg/L)	≤400	
21	亚硝酸盐(以N计)/(mg/L)	≤4.80	
22	硝酸盐(以N计)/(mg/L)	≤30	
23	氰化物/(mg/L)	≤0. 1	
24	氟化物/(mg/L)	≤12.0	
25	碘化物/(mg/L)	≤0.50	
26	汞/(mg/L)	≤0.002	
27	砷/(mg/L)	≤0.05	
28	硒/(mg/L)	≤0. 1	
29	镉/(mg/L)	≤0.01	
30	铬 (六价) / (mg/L)	≤0. 10	
31	铅/(mg/L)	≤0. 10	
32	三氯甲烷/(μg/L)	≤300	
33	四氯化碳/(μg/L)	≤50.0	
34	苯/(μg/L)	≤120	
35	甲苯/(μg/L)	≤1400	
36	铍/(mg/L)	≤0.06	
37	钡/(mg/L)	≤4.00	
38	镍/(mg/L)	≤0.10	
39	总大肠菌数/(MPN ^b /100mL 或 CFU°/100mL)	≤100	
40	细菌总数/(CFU/mL)	≤1000	
41	总铬	≤0.10	
42	二噁英	/	
	* 1		《地表水环境质量标
43	总磷	0.3	准》(GB3838-2002)
44	石油烃(C ₁₀ -C ₄₀)/(mg/L)	1.2	《上海市建设用地地 下水污染风险管控筛 选值补充指标》中的 第二类用地筛选值
45	钴	≤0.10	《地下水质量标准》
46	锑	≤0.01	(GB/T14848-2017)
47	铊	≤0.001	中的IV类质量标准
48	锰	/	/

7 样品采集、保存、流转与制备

7.1 现场采样位置、数量和深度

7.1.1 现场采样位置

丽水旺能所有布设采样点均经过现场踏勘,采样布点经自行监测方案编制单位及企业负责人双方认可;采样点位现场情况详见表 7.1-1。

表 7.1-1 采样点位现场情况表

重点单元	点位编号	现场照片
单元 A	S1/W1	
单元 B	S2/W2	

7.1.2 现场采样深度

7.1.2.1 钻探深度

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)

规定,土壤采样深度深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面;表层土壤监测点采样深度应为 0~0.5 m。地下水自行监测原则上只调查潜水,地块内存在地下设施,共划分 4 个一类单元。本项目需新建监测井,表层土壤采集表层土,深层土壤采集柱状样,S1、S2、S4 钻探深度为 6 米,S3 钻探深度为 9m。

7.1.2.2 土壤采样深度

深层土采样深度:每个深层土采样点位采集至少3个深度土壤样品,应包括表层0~50cm、地下水水位线附近样品(根据快速检测结果和土层性质分布判断)、底层样,现场快速检测按照0-3m每间隔0.5m一个土壤进行。如在采样过程遇明显异常异味土壤,需增加送检样品。

表层土采样深度: 0~50cm。

7.1.2.3 地下水采样深度

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)规定,地下水自行监测原则上只调查潜水,因此地下水采样深度地下水位线附近50cm 范围内。

7.1.3 现场采样数量

- (1)土壤:本方案共布设土壤采样点位 9 个,包括 4 个表层土点位和 5 个深层土单位,因此共需采集 19 个土壤样品,另外需采集 2 个现场平行样。
- (2) 地下水: 共布设 5 个地下水监测井, 共采集样品 5 个, 另外需采集 1 个现场平行样。

7.2 采样准备

采样全过程中严格依照《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《土壤环境监测技术规范》(HJ/T 166-2004)、《建设用地土壤污染风险管控和修复监测技术导则(HJ25.2-2019)》、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)进行,在开展土壤和地下水样品采集项目前需进行采样准备,具体内容包括:

(1) 召开工作组调查启动会,按照自行监测方案,明确工作组内人员任务

分工和质量考核要求。

- (2)制定并确认采样计划,选择适合的钻探方法和设备,与钻探单位和检测单位进行技术交底,明确任务分工和要求。钻探设备的选取应综合考虑地块的建构筑物条件、安全条件、地层岩性、采样深度和污染物特性等因素,并满足取样的要求。其中,挥发性有机物(VOCs)和恶臭污染土壤的采样,应采用非扰动的钻探设备。
- (3)由采样单位、企业和钻探单位组织进场前安全培训,培训内容包括设备的安全使用、现场人员安全防护及应急预案等。
- (4)按照自行监测方案,开展现场踏勘。根据企业设施分布实际情况以及 便携式仪器速测结果对点位适当调整,采用钉桩、喷漆等方式设置钻探点标记和 编号。
- (5) 根据检测项目准备土壤采样工具。检测 VOCs 土壤样品采集使用非扰动采样器,检测非挥发性和半挥发性有机物 SVOCs 土壤样品使用不锈钢铲或表面镀特氟龙膜的采样铲; 检测重金属土壤样品采集使用塑料铲或竹铲。
- (6)准备适合的地下水采样工具。根据调查企业水文地质特征和地下水污染特征,选择适用的洗井设备和地下水采样设备。本项目,采用气囊泵和一次性贝勒管采集地下水样品进行地下水采样。
- (7) 根据土壤采样现场监测需要,准备适合的现场便携式设备,包括 pH 计、电导率、PID、XRF 和氧化还原电位仪等现场快速检测设备和手持智能终端,检查设备运行状况,使用前进行校准。
- (8)准备适合的样品保存设备。包括样品瓶、样品箱、蓝冰等,同时检查样品箱保温效果、样品瓶种类和数量、样品固定剂数量等。
 - (9)准备人员防护用品。包括安全防护口罩、一次性防护手套、安全帽等。
- (10)准备其他采样物品。包括签字笔、采样记录单、防雨器具、影像记录设备、现场通讯工具等其他采样辅助物品。

7.3 采样方法及程序

7.3.1 土壤采样要求

7.3.1.1 采样总体要求

采用金属探测器和探地雷达等设备探测地下障碍物,确保采样位置避开地下 电缆、管线、沟、槽等地下障碍物。

依据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤环境调查评估技术指南》和《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)中的要求进行。水位以上采取无水干钻,水位以下待取水样后采用清水或不产生附加污染的可生物降解的酯基洗孔液。钻进深度最大偏差±0.05m。岩芯采取率粘土层≥90%,地下水位以上砂土层≥80%,地下水位以下砂土层≥70%。回次进尺粘性土中不超过 2.0m,饱和砂土中不超过 1.0m,软土中不超过 1.0m。

7.3.1.2 采样控制要求

- (1) 钻孔控制
- ①进行钻孔操作的设备,包括手套和其它采样设备,在使用前或变换操作地点时应彻底清洁,清除液体,以避免交叉污染。
 - ②采样工具严格分开,一个样品用一套工具。
 - ③及时记录覆盖建筑层厚度
 - (2) 土样的采集控制
 - ①取样由专业人员操作,为了避免污染,取样时使用专用手套。
- ②将采集到的样品依据不同的检测项目放入各自专用容器中,挥发性有机物样品放入棕色样品瓶、半挥发性有机物样品放入玻璃瓶并用锡纸包裹避光密封保存、金属样品放入聚乙烯自封袋。

7.3.1.3 采样方法要求

根据自行监测方案确定的采样点座标,在企业用地范围内查找相应的采样点位置,用 GPS 校正并确定该点的正确位置,做好记录。采样现场如果遇到现场条件无法进行采样,需要对采样点位调整时,做好详细记录。

(1) 挥发性有机物土壤样品采样

由于 VOCs 样品的敏感性,取样时严格按照取样规范进行操作,VOCs 样品 采集分以下几步:

- ①剖制取样面:在进行 VOCs 土壤取样前,应去除取样点硬化层,并去除表层 10-30cm 土壤,以去除硬化层渣砾和排除因取样管接触或空气暴露造成表层土壤 VOCs 流失。
- ②取样保存: 在 40ml 土壤样品瓶中预先加入 5ml 甲醇,采集的土壤立即转移至土壤样品瓶中,并快速清除瓶口螺纹处黏附的土壤,拧紧瓶盖。

(2) Non-VOCs 土壤样品采样

Non-VOCs 是指半挥发性有机物、重金属,为确保样品质量和代表性,本项目 Non-VOCs 样品取样过程与 VOCs 大致相同,只是 Non-VOCs 样品取出后,采用专用的广口瓶盛放,装满,密封。土壤装样过程中,尽量减少土壤样品在空气中暴露时间,且尽量将容器装满(消除样品顶部空气)。土壤样品采集完成后,在样品上表明编号等采样信息,并做好现场记录。所有样品采集完成后及时送至实验室分析。

7.3.1.4 现场采样安全注意事项

- (1)采样人员去现场采样时,必须穿戴好劳动保护用品。
- (2)取气体样品时必须合理站位(上风口方向)。
- (3)取液体(酸)碱时,要缓慢开启阀门取样,否则会发生(酸)碱液喷出, 发生危险。
- (4)用盐酸、浓硫酸、氨水等配制粗溶液时,要戴上橡胶手套、防护眼镜等防护用品,一旦溅在身上,则用大量清水冲洗。
- (5)取固碱样品,必须用干燥的取样器和玻璃容器,动作要轻缓,以免碱溅 在身上引起烫伤。
 - (6)不得用湿手开关电闸,以免发生触电事故。
- (7)现场需根据实际情况及要求配备安全辅助用品,如安全带、安全帽、防 毒面具、警示标志、警示背心等。

7.3.1.5 样品保存要求

样品采样过程中质量控制措施严格按照《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)、《土壤环境监测技术规范》(HJT166-2004)、《地下水环境监测技术规范》(HJ164-2020)中的技术规范进行操作:

- (1) 防止采样过程中的交叉污染。钻机采样过程中,第一个钻孔开钻前要进行设备清洗;同一钻机在不同点位钻孔时,应对钻探设备进行清洗;同一钻机在不同深度采样时,应对钻探设备、取样装置进行清洗等。
- (2) 所有样品采集后应立即用特氟龙膜密封,所有样品放置在冷藏箱并在 48h 内运至实验室分析。

7.3.1.6 样品交接与运输控制

- (1) 现场采样人员对采集的样品及时进行标识、加贴标签。加贴标签上应包括采样地点、分析项目及样品编号等信息。
- (2)根据采样规范的要求,妥善保存和安全运输,需要加固定剂的,应现场添加固定剂,需要低温或避光保存的,应立即进行低温或避光保存(包括运输过程中),防止运输过程中的沾污、变质和损坏。
- (3) 现场采样人员将样品交样品管理人员,并在《样品交接记录单》上双方签字确认。
- (4)样品管理人员接收到样品后,检查样品的状况,填写《样品交接记录单》。注明样品的编号、数量、特征、状态和是否有异常情况,对接收样品再加实验室编号,及时将样品转交分析人员,并说明是否留样。
- (5)样品用密封性良好材料进行包装,样品运输要根据对温度、湿度的要求分类处理。测定有机物的样品需要冷藏可以根据冷藏温度和运送所需时间决定用冷藏箱、车载冷柜等方式。在运送过程中,要保证条件能够持续保障。对于易分解或易挥发等不稳定组分的样品要采取低温保存的运输方法,并尽快送到实验室分析测试。测试项目需要新鲜样品的土样,采集后用可密封的聚乙烯或玻璃容器在4℃以下避光保存,样品要充满容器。避免用含有待测组分或对测试有干扰的材料制成的容器盛装存样品,测定有机污染物用的土壤样品要选用玻璃容器保

存。

7.3.1.7 土壤采样监测注意事项

- (1) 防止采样过程的交叉污染在两次钻孔之间,钻探设备应该进行清洗; 当同一钻孔在不同深度采样时,应对钻探设备、取样装置进行清洗;当与土壤接 触的其他采样工具重复使用时,应清洗后使用。采样过程中要佩戴手套。为避免 不同样品之间的交叉污染,每采集一个样品须更换一次手套。每采完一次样,都 须将采样工具用自来水洗净后再用蒸馏水淋洗一遍。液体汲取器则为一次性使用。
- (2) 防止采样的二次污染每个采样点钻探结束后,应将所有剩余的废弃土装入垃圾袋内,统一运往指定地点储存;洗井及设备清洗废水应使用塑料容器进行收集,不得随意排放。
- (3) 现场质量控制规范采样操作:采样前组织操作培训,采样中一律按规程操作。采集质量控制样:现场采样质量控制样一般包括现场平行样、现场空白样、运输空白样、清洗空白样等,且质量控制样的总数应不少于总样品数 10%。规范采样记录:将所有必需的记录项制成表格,并逐一填写。采样送检单必须注明填写人和核对人。

7.3.2 地下水采集要求

7.3.2.1 采样总体要求

在企业平面图上标记采样点,根据平面图查找相应采样点位置,在确定该点可实施采样工作后,用 GPS 读取该点方里网座标。如果遇到现场条件无法进行采样,则由专业人员提出采样点位调整方案,并做好详细记录。在监测井洗井稳定 24 到 48 小时后,对监测井中地下水的 pH 值、电导率、温度等指标进行测定,读数稳定在±10%以内,方可进行地下水样的采集。

7.3.2.2 地下水监测井建设要求

地下水监测井的建设根据《地下水环境监测技术规范》(HJ164-2020)进行, 新凿监测井一般在地下潜水层即可,按以下步骤进行:

- (1) 用 ϕ 110 \sim 130mm 的钻具钻孔, 至潜水层再往下 3 米 \sim 4.5 米。
- (2) 用扩孔器或 φ 170mm 的钻具进行扩孔。

- (3) 安装Φ168mm 的钢管及Φ60~70mm 的 PVC 管, PVC 管底部 1 米为 滤水管, 其余为盲水管。滤水管应安装于水井底端, 水井顶端的盲水管上需安装 一个 10 厘米长的管帽。井的顶端一般超过地面 0.5 米~1 米。
- (4)为了避免滤料与含水层产生不必要的化学反应干扰地下水的化学性质,选取纯净石英砂(一般 40 目或 60 目)作为滤料。将石英砂注入Φ60mm~70mm的 PVC 管和Φ168mm的钢管之间,直至石英砂高出滤水管部分约 30cm,然后投入 30mm~40cm 高的黄泥土形成一个环型密封圈起隔离作用,再灌入混凝土,以密封地下水监测井。在灌入混凝土的过程中,必须边灌混凝土边拔Φ168mm钢管,直至混凝土灌至孔口位置,留下 1.5m 左右钢管(其中地表以上 0.5m)于监测井中,最后用混凝土修筑井台,安装井盖,并放置井牌。

7.3.2.3 洗井要求(并要求做好洗井记录)

地下水样品采样采用钻机达到指定深度,确保放入花管时能够保持预定厚度 的滤层,建立地下水取样井。

监测井井管的深度、筛管的长度和位置应该根据地块所在区域地下水水位历史变化情况、含水层厚度以及监测目的等进行调整。对于非承压水监测井,井管底部不得穿透潜水含水层的隔水层底板;对于承压水监测井,应分层止水。丰水期时一般需要有1m的筛管位于地下水面以上,枯水期一般需要1m的筛管位于地下水面以下,以保证监测井的水量满足采样需求。当地下水中含非水相液体时,筛管应在以下位置:

当地下水中含低密度非水相液体时, 筛管中间应在地下水面处:

B) 当地下水中含高密度非水相液体时, 筛管下端应在含水层的底板处。

取样井钻探完成后,安装一根封底的内径为 70mm 的硬质 PVC 井管,硬质 PVC 井管由底部密闭、管壁可滤水的筛管、上部延伸到地表的实管组成。取样 井筛管外侧周围用粒径 > 0.25mm 的清洁石英砂回填作为滤水层,石英砂回填至 地下水位线处,其上部再回填不透水膨润土,最后在井口处用水泥浆回填至自然 地坪处。

监测井建设完成后,至少稳定 8h 后开始成井洗井。采用成井洗井设备(贝乐管等),通过超量抽水、汲取等方式进行洗井。至少洗出约3倍井体积的水量。

成井洗井应满足 HJ25.2 相关要求,使用便携式水质测定仪对出水进行测定, 当浊度小于或等于 10NTU 时,可结束洗井;当浊度大于 10NTU 时,应每间隔约 1 倍井体积的洗井水量后对出水进行测定,结束洗井应同时满足以下条件:

- a) 浊度连续三次测定的变化在 10%以内;
- b) 电导率连续三次测定的变化在 10%以内:
- c) pH 连续三次测定的变化在 10%以内。

成井洗井结束后,监测井至少稳定 48h 后开始采集地下水样品。

地下水采样前应进行采样前洗井,在现场使用便携式水质检测仪,每间隔5min后测定输水管线出口的出水水质,直至至少3项检测指标连续三次测定的变化达到下表的稳定标准;如洗井4h后出水水质未能达到稳定标准,可采用贝乐管采样方法进行采样。

检测指标	稳定标准
pH	±0.1
温度	±0.5℃以内
电导率	±10%
氧化还原电位	±10mV,或在10%以内
溶解氧	±0.3mg/L,或在 10%以内
浊度	≤10NTU,或在 10%以内

表 7.3-1 采样前洗井出水水质稳定标准

洗井完成后,必须在 2h 内完成地下水采样,洗井需做好记录等工作,优先 采集用于测定挥发性有机物的地下水样品。

7.3.2.4 监测井的保护措施

为防止监测井物理破坏,防止地表水、污染物质进入,监测井应建有井台、 井口保护管、锁盖等。井台构筑通常分为明显式和隐藏式井台,隐藏式井台与地 面齐平,适用于路面等特殊位置。

a) 采用明显式井台的,井管地上部分约 30~50cm,超出地面的部分采用管套保护,保护管顶端安装可开合的盖子,并有上锁的位置。安装时,监测井井管位于保护管中央。井口保护管建议选择强度较大且不宜损坏材质,管长 1m,直径比井管大 10cm 左右,高出平台 50cm,外部刷防锈漆。监测井井口用与井管同材质的丝堵或管帽封堵。

b) 采用隐蔽式井台的,其高度原则上不超过自然地面 10cm。为方便监测时能够打开井盖,建议在地面以下的部分设置直径比井管略大的井套套在井管外,井套外再用水泥固定并筑成土坡状。井套内与井管之间的环形空隙不填充任何物质,以便于井口开启和不妨碍道路通行。

7.3.2.5 监测井的维护与管理

- (1) 对每个监测井建立环境监测井基本情况表,监测井的撤销、变更情况 应记入原监测井的基本情况表内新换监测井应 新建立环境监测井基本情况;
- (2)每年应指派专人对监测井的设施进行维护,设施一经损坏,必须及时修复;
- (3)每年测量监测井井深一次,当监测井内淤积物淤没滤水管,应及时清淤;
- (4)每2年对监测井你性行一次透水灵敏度试验。当向井内注入灌水段1m 井管容积的水量,水位复原时间超过15min时,应进行洗井;
 - (5) 井口固定点标志和孔口保护帽等发生移位或损坏时,必须及时修复。

7.4 样品保存、流转与制备

7.4.1 样品保存

7.4.1.1 土壤样品保存

土壤样品保存方法和有效时间要求参照《土壤环境监测技术规范》 (HJ/T166-2004)和全国土壤污染状况详查相关技术规定,按土壤样品名称、编号和粒径分类保存。

(1) 新鲜样品的保存

对于易分解或挥发等不稳定组分的样品要采取低温保存的运输方法,并尽快送到实验室分析测试。测试项目需要新鲜样品的土壤,采集后用可密封的聚乙烯或玻璃容器在 4℃以下避光保存,样品要充满容器。避免用含有待测组分或对测试有干扰的材料制成的容器盛装保存样品,测定有机污染物用的土壤样品要选用玻璃容器保存。具体保存条件见表 7.4-1。

表 7.4-1 新鲜样品的保存条件和保存时间

测试项目	容器材质	温度(℃)	可保存时间(d)	备注
金属 (汞除外)	聚乙烯、玻璃	<4	180	/
汞	玻璃	<4	28	/
挥发性有机物	带四氟乙烯隔 热的螺纹口棕 色玻璃瓶	<4	7	加入甲醇, 采样瓶 装满装实并密封
半挥发性有机物		<4	10	采样瓶装满装实并 密封
难挥发性有机物		<4	14	/

(2) 预留样品

预留样品在样品库造册保存。

(3) 分析取用后的剩余样品

分析取用后的剩余样品,待测定后全部完成数据报出后,也移交样品库保存。

(4) 保存时间

分析取用后的剩余样品一般保留半年,预留样品一般保留 2 年。特殊、珍稀、仲裁、有争议样品一般要永久保存。

(5) 样品库要求

保持干燥、通风、无阳光直射、无污染;要定期清理样品,防止霉变、鼠害 及标签脱落。样品入库、领用和清理均需记录。

7.4.1.2 地下水样品保存

地下水样品保存方法和有效时间要求参照《地下水环境监测技术规范》 (HJ164-2020)和《全国土壤污染状况详查地下水样品分析方法技术规定》执行。

- (1)每个监测单位应设样品贮存间,用于进站后测试前及留样样品的存放, 两者需分区设置,以免混淆。
- (2)样品贮存间应置冷藏柜,以贮存对保存温度条件有要求的样品。必要时,样品贮存间应配置空调。
 - (3) 样品贮存间应有防水、防盗和保密措施,以保证样品的安全。
- (4)样品管理员负责保持样品贮存间清洁、通风、无腐蚀的环境,并对贮存环境条件加以维持和监控。
 - (5) 地下水样品变化快、时效性强,监测后的样品均留样保存意义不大,

但对于测试结果异常样品、应急监测和仲裁监测样品,应按样品保存条件要求保留适当时间。留样样品应有留样标识。

序号	检测 指标	采样容器	保存剂	允许 保存时间	依据
1	重金属	P	1L 水样中加浓 HCl10ml	14d	НЈ164-2020
2	六价铬	P	P 加氢氧化钠至 pH8-9		НЈ164-2020
3	汞	P	1L 水样中加浓 HCl10ml	14d	НЈ164-2020
4	氟化物	P	/	14d	НЈ164-2020
5	挥发性 有机物	40ml 棕色 G	用 1+10HCl 调至 pH≤2,加 入 0.01g~0.02g 抗坏血 酸去余氯	14d	НЈ164-2020

表 7.4-2 地下水样品保存方式

7.4.2 样品流转

1、装运前核对

样品管理员和质量检查员负责样品装运前的核对,要求样品与采样记录单进行逐个核对,检查无误后分类装箱,并填写"样品保存检查记录单"。如果核对结果发现异常,应及时查明原因,由样品管理员向组长进行报告并记录。

样品装运前,填写"样品运送单",明确样品名称、采样时间、样品介质、 检测指标、检测方法、样品寄送人等信息。样品运送单用防水封套保护,装入样 品箱一同进行送达样品检测单位。样品装入样品箱过程中,要采用泡沫材料填冲 样品瓶和样品箱之间空隙。样品装箱完成后,需要用密封胶带或大件木头箱进行 打包处理。

2、样品运输

样品流转运输应保证样品完好并低温保存,采用适当的减震隔离措施,严防样品瓶的破损、混淆或沾污,在保存时限内运送至样品检测单位。

样品运输应设置运输空白样进行运输过程的质量控制,一个样品运送批次设置一个运输空白样品。

3、样品接收

样品检测单位收到样品箱后,应立即检查样品箱是否有破损,按照样品运输 单清点核实样品数量、样品瓶编号以及破损情况。若出现样品瓶缺少、破损或样 品瓶标签无法辨识等重大问题,样品检测单位的实验室负责人应在"样品运送单" 中"特别说明"栏中进行标注,并及时与采样工作组组长沟通。

上述工作完成后,样品检测单位的实验室负责人在纸版样品运送单上签字确认并拍照发给采样单位。样品运送单应作为样品检测报告的附件。

样品检测单位收到样品后,按照样品运送单要求,立即安排样品保存和检测。

7.4.3 样品前处理

重金属样品:将样品置于白色搪瓷盘中,摊成 2~3cm 的薄层,在通风无阳光直射处自然风干,并不时进行样品翻动,挑去土壤样品中的石块、草根等明显非样品的东西。风干后,用木锤将全部样品敲碎,并用 20 目尼龙筛进行过滤、混匀,用球磨机磨细,过 100 目筛后混匀后分 2 份,其中测 As、Hg 的样品装入带有内塞的聚乙烯塑料瓶中,另一份直接装入牛皮纸袋供检测用,其余样品当留样保存。质量检查人员每天在已加工好的样品中随机抽取 3%的样品,从中分出5g 过筛检查,过筛率大于 95%,合格后送实验室分析检测,不合格者全部返工。

VOCs 样品: 直接进入吹扫捕集仪,进行上机分析。

SVOCs 样品:根据《土壤和沉积物半挥发性有机物的测定气相色谱-质朴法》 (HJ834-2017)中对半挥发性有机物的土壤样品制备要求,将样品放在搪瓷盘或不锈钢上,混匀,除去枝棒、叶片、石子等异物,按照 HJ/T166 进行四分法粗分,采用冻干法或干燥剂法进行干燥,取适量混匀后样品,放入真空冷冻干燥机中进行干燥脱水。干燥后的土壤样品进行研磨过 0.25mm 孔径的筛子,均化处理成 60目左右的颗粒,然后进行提取。

8 检测结果分析

8.1 土壤检测结果分析

8.1.1 土壤分析方法

各检测因子检测分析方法如下表所示

表8.1-土壤样品分析测试方法

序号	监测项目	监测依据	检出限
1	2-氯酚		0.06mg/kg
2	硝基苯		0.09mg/kg
3	萘		0.09 mg/kg
4	苯并(a)蒽		0.1 mg/kg
5	崫	土壤和沉积物 半挥发性有机物的测定 气相	0.1 mg/kg
6	苯并(b)荧蒽	色谱-质谱法 HJ 834-2017	0.2 mg/kg
7	苯并(k)荧蒽		0.1 mg/kg
8	苯并(a)芘		0.1 mg/kg
9	茚并(1,2,3-cd)芘		0.1 mg/kg
10	二苯并(ah)蒽		0.1 mg/kg
11	苯胺(半挥发性有机物)	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附录 K	0.03mg/kg
12	氯甲烷		1.0μg/kg
13	氯乙烯		1.0μg/kg
14	1,1-二氯乙烯		1.0µg/kg
15	二氯甲烷		1.5µg/kg
16	反式-1,2-二氯乙烯		1.4µg/kg
17	1,1-二氯乙烷		1.2µg/kg
18	顺式 1,2-二氯乙烯		$1.3 \mu g/kg$
19	氯仿		1.1µg/kg
20	1,1,1-三氯乙烷	 土壤和沉积物 挥发性有机物的的测定 吹扫	$1.3 \mu g/kg$
21	四氯化碳	捕集气相色谱-质谱法	1.3µg/kg
22	苯	研来(作品)。	1.9µg/kg
23	1,2-二氯乙烷	113 003-2011	1.3µg/kg
24	三氯乙烯		1.2µg/kg
25	1,2-二氯丙烷		1.1µg/kg
26	甲苯		1.3µg/kg
27	1,1,2-三氯乙烷		1.2µg/kg
28	四氯乙烯		1.4µg/kg
29	氯苯		1.2µg/kg
30	1,1,1,2-四氯乙烷		1.2µg/kg
31	乙苯		$1.2\mu g/kg$

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

32	间,对-二甲苯		1.2μg/kg
33	邻-二甲苯		1.2μg/kg
34	苯乙烯		1.1µg/kg
35	1,1,2,2-四氯乙烷		1.2μg/kg
36	1,2,3-三氯丙烷		1.2μg/kg
37	1,4-二氯苯		1.5μg/kg
38	1,2-二氯苯		1.5µg/kg
39	铜	上海和汉和伽 10种人民二主的测点	0.5 mg/kg
40	镍	土壤和沉积物 12种金属元素的测定	2 mg/kg
41	铅	王水提取-电感耦合等离子体质谱法 HJ 803-2016	2 mg/kg
42	镉	HJ 803-2016	0.07mg/kg
43	六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火	0.5
43	八川诒	焰原子吸收分光光度法 HJ 1082-2019	0.5mg/kg
		土壤质量 总汞、总砷、总铅的测定 原子荧光	
44	汞	法 第1部分: 土壤中总汞的测定 GB/T	0.002 mg/kg
		22105.1-2008	
		土壤质量 总汞、总砷、总铅的测定 原子荧光	
45	砷	法 第2部分: 土壤中总砷的测定 GB/T	0.01 mg/kg
		22105.2-2008	
46	рН	土壤 pH 值的测定 电位法 HJ 962-2018	/
47	二噁英类	土壤和沉积物 二噁英类的测定 同位素 稀释	0.05 ng/kg
47	一心光天	高分辨气相色谱-高分辨质谱法 HJ77.4-2008	0.03 fig/kg
48	石油烃	土壤和沉积物 石油烃(C10-C40)的测定 气	6 mg/kg
70	石田江	相色谱法 HJ 1021-2019	o mg/kg
50	锑	原子荧光法 GB/T 22105.2-2008	$0.089 \mu g/L$
51	钴	原子荧光法 GB/T 22105.2-2008	2mg/kg
52	锰	/	/
53	铊	原子荧光法 GB/T 22105.2-2008	0.1mg/kg

8.1.2 2022 年土壤各点位检测结果

2022年土壤检测结果如下表8.1-2所示

表 8.1-2-土壤样品检测结果

检测点位	S1			S2			
采样深度 (m)	0~0.5	1.0~1.5	1.5~2.0	0~0.5	1.5~2.0	4.0~4.8	I V424
采样日期	10.25	10.25	10.25	10.25	10.25	10.25	标准
采样时间	17:20	17:20	17:20	15:10	15:10	15:10	限值
+ + - + + + + + + + + + + + + + + + + + +	棕褐色	棕褐色素	棕褐色素	黄褐色素	黄褐色	黄褐色淤	
样品性状	素填土	填土	填土	填土	素填土	泥质粘土	

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

	111117	CHETTO, I NOTICEN	111111111111111111111111111111111111111	、地下水坏境目	111 711/11/11		
pH 值 (无量纲)	7.55	7.50	7.40	7.43	7.30	7.20	/
砷 (mg/kg)	4.61	4.03	5.29	3.92	5.44	2.41	60
镉 (mg/kg)	0.62	0.55	0.26	0.40	1.38	0.32	65
六价铬 (mg/kg)	<0.5	<0.5	<0.5	0.8	0.7	0.8	5.7
铜 (mg/kg)	29.8	19.7	18.5	13.8	30.5	17.6	1800 0
铅 (mg/kg)	49	50	34	43	74	35	800
汞 (mg/kg)	0.444	0.230	0.159	0.143	0.154	0.181	38
镍 (mg/kg)	18	13	18	8	18	16	900
锑 (mg/kg)	0.174	<1.00×10 ⁻	<1.00×10 ⁻	<1.00×10 ⁻	0.579	<1.00×10 ⁻	180
钴 (mg/kg)	11.9	9.37	12.9	6.58	12.7	8.93	70
铊 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	/
锰 (mg/kg)	627	733	674	809	1.03×10 ³	281	/
四氯化碳 (mg/kg)	<1.3×10 ⁻	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻	<1.3×10 ⁻³	2.8
氯仿 (mg/kg)	<1.1×10 ⁻	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻	<1.1×10 ⁻³	0.9
氯甲烷 (mg/kg)	<1.0×10 ⁻	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻	<1.0×10 ⁻³	37
二氯甲烷 (mg/kg)	<1.5×10 ⁻	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻	<1.5×10 ⁻³	616
1,1-二氯 乙烷 (mg/kg)	<1.2×10 ⁻	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻	<1.2×10 ⁻³	9
备注	标准限值执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》						

表 8.1-3 2022 年土壤二噁英类检测结果

样品编号	样品名称	样品性状	二噁英类总毒性当 量(TEQ)质量浓度 (ng/kg)
RBSH2210106-1031-T-1-1	RBS2210020-1025-T-6-1	棕褐色块状	16
RBSH2210106-1031-T-2-1	RBS2210020-1025-T-7-1	黄褐色颗粒	1.3
RBSH2210106-1031-T-3-1	RBS2210020-1026-T-8-1	杂色块状	6.5
RBSH2210106-1031-T-4-1	RBS2210020-1024-T-9-1	棕黄色块状	2.9
RBSH2210106-1031-T-5-1	RBS2210020-1025-T-10-1	黄褐色颗粒	1.2
RBSH2210106-1031-T-6-1	RBS2210020-1026-T-11-1	黄褐色颗粒	0.84

根据检测结果可知,丽水旺能年土壤 pH 属中性;土壤样品中各检测因子检出浓度均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值,二噁英检出浓度未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类质量标准

8.1.3 2023 年土壤各点位检测结果

2023 年土壤检测结果如下表所示

表 8.1-4 2023 年土壤样品检测结果

检测点位	1A01	1A02	1B01	1B02	
采样日期	12.05	12.05	12.05	12.05	+41- ÷4+
采样深度(m)	0~0.2	0~0.2	0~0.2	0~0.2	排放 限值
扶口补化	棕黄色沙	棕黄色沙	棕黄色沙	棕黄色沙	
样品性状	壤土	壤土	壤土	壤土	
pH 值(无量纲)	6.86	6.97	7.12	6.91	/
石油烃(C ₁₀ ~C ₄₀)(mg/kg)	<6	<6	<6	<6	4500
二噁英总毒性当量(ng/kg)	1.5	1.9	1.7	0.94	40

8.1.4 监测结果分析

根据 2022 年初次监测结果分析,丽水旺能土壤各点位的重金属、挥发性有机物、半挥发性有机物、二噁英、石油烃(C₁₀~C₄₀)均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。

由于初次监测中未出现超标的污染物,因此2023年后续土壤仅对特征污染

物进行了检测,根据检测结果,二噁英、石油烃($C_{10}\sim C_{40}$)均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。

8.2 地下水检测结果分析

8.2.1 地下水分析方法

各检测因子检测分析方法如下表所示

表8.2-1地下水样品分析测试方法

序号	监测项目	监测依据	检出限
1	II 店	水质 pH 值的测定 玻璃电极法	1
1	pH 值	GB/T 6920-1986	/
2	色度	水质 色度的测定 GB/T 11903-1989	5度
3	浊度	水质 浊度的测定 浊度计法 HJ 1075-2019	0.3NTU
4	2.7元 庄	水质 钙和镁总量的测定 EDTA 滴定法	,
4	总硬度	GB/T7477-1987	/
_	次切址田44月	地下水质检验方法	,
5	溶解性固体总量	溶解性固体总量的测定 DZ/T 0064.9-1993	/
	四南フま石には対	水质 阴离子表面活性剂的测定	0.05 /1
6	阴离子表面活性剂	亚甲蓝分光光度法 GB/T 7494-1987	0.05 mg/L
7	复层	水质 氨氮的测定	0.025 /I
7	氨氮	纳氏试剂分光光度法 HJ 535-2009	0.025 mg/L
8	铁		0.82µg/L
9	锰		0.12μg/L
10	铜	水质 65 种元素的测定	0.08µg/L
11	锌	电感耦合等离子体质谱法	0.67μg/L
12	铝	НЈ 700-2014	1.15µg/L
14	镉		0.05μg/L
15	铅		0.09µg/L
16	高锰酸盐指数	水质 高锰酸盐指数的测定 GB/T 11892-1989	0.5 mg/L
17	硫化物	水质 硫化物的测定 GB/T 16489-1996	0.005 mg/L
18	硝酸盐(以N计)	水质 无机阴离子(F·、Cl·、NO ₂ ·、Br·、NO ₃ ·、	0.004 mg/L
19	硫酸盐	PO ₄ ³ ·、SO ₃ ² ·、SO ₄ ² ·)的测定 离子色谱法 HJ	0.018 mg/L
20	氯化物	84-2016	0.007 mg/L
21	亚唑酚北层	水质 亚硝酸盐氮的测定 分光光度法 GB/T	0.002 /I
21	亚硝酸盐氮	7493-1987	0.003 mg/L
22	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法	0.004/1
	八川'업	GB/T 7467-1987	0.004 mg/L
23	挥发酚	水质 挥发酚的测定	0.0003 mg/L

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

	1413.4	4-氨基安替比林分光光度法 HJ 503-2009	
24	 汞	水质 汞 砷 硒 铋 锑的测定 原子荧光法	0.04μg/L
25	神	HJ694-2014	0.3μg/L
23	нд	生活饮用水标准检验方法 感官性状和物理指	0.5μg/L
26	嗅和味	标 GB/T 5750.4-2006	/
		生活饮用水标准检验方法 感官性状和物理指	
27	肉眼可见物	标 GB/T 5750.4-2006	/
		水质 可溶性阳离子 (Li+、Na+、NH4+、K+、	
28	 納	Ca ²⁺ 、Mg ²⁺)的测定	0.02mg/L
20	N.1	离子色谱法 HJ 812-2016	0.02IIIg/L
		水质 氰化物的测定 容量法和分光光度法	
29	氰化物	HJ 484-2009	0.004mg/L
		水质	
30	 氟化物	PO ₄ ³ ·、SO ₃ ² ·、SO ₄ ² ·)的测定 离子色谱法HJ	0.006mg/L
	390 101/2	84-2016	0.000mg/L
		生活饮用水标准检验方法 无机非金属指标	
31	碘化物	碘化物 GB/T 5750.5-2006	
		水质 汞、砷、硒、铋和锑的测定 原子荧光法	
32	硒	НЈ 694-2014	
33	三氯甲烷		1.4μg/L
34	四氯化碳	· 水质 挥发性有机物的测定	1.5μg/L
35	苯	吹扫捕集/气相色谱-质谱法 HJ 639-2012	1.4µg/L
36	甲苯		1.4µg/L
	N. myle	水质 总磷的测定 钼酸铵分光光度法 GB/T	
37	总磷	11893-1989	0.01mg/L
38	总铬		19μg/L
39	锑	生活饮用水标准检验方法 金属指标 GB/T	30μg/L
41	钴	5750.6-2006 (ICP)	2.5μg/L
42	铊		40μg/L
43	总大肠菌群	生活饮用水标准检验方法 微生物指标 GB/T	/
44	菌落总数	5750.12-2006	/
45	石油烃(C ₁₀ ~C ₄₀)	水质 可萃取性石油烃(C10~C40)的测定 气	0.01
73	/H 1ШДЬ (CIO · C40 /	相色谱法 HJ894-2017	0.01
		水质 二噁英类的测定	
46	二噁英	 同位素稀释高分辨气相色谱-高分辨质谱法 HJ	/
		77.1-2008	
	l .	1	

8.2.2 2022年各点位检测结果

地下水检测结果如下表8.2-2所示

表 8.2-2 2022 年地下水样品检测结果

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

检测点位	W1	W2	W3	W4	W0	
采样日期	10.26	10.26	10.26	10.26	10.26	 标准
采样时间	16:10	15:48	15:15	15:29	16:25	限值
样品性状	无色透明	无色透明	无色透明	无色透明	无色透明	
pH 值 (无量纲)	8.0	7.9	8.1	8.0	8.2	5.5~9.0
色度 (度)	5	5	5	5	5	25
臭和味 (无单位)	无	无	无	无	无	无
浑浊度 (NTU)	8.9	5.2	8.9	8.1	9.5	10
肉眼可见 物 (无单位)	无	无	无	无	无	无
总硬度 (mg/L)	92.4	140	55.9	50.5	92.2	650
溶解性总 固体 (mg/L)	142	238	77	177	121	2000
硫酸盐 (mg/L)	1.62	4.58	4.54	9.70	1.32	350
氯化物 (mg/L)	8.90	43.9	43.9	81.3	6.95	350
铜 (mg/L)	1.61×10 ⁻³	1.43×10 ⁻³	2.65×10 ⁻³	1.72×10 ⁻³	7.74×10 ⁻⁴	1.50
铁 (mg/L)	6.38×10 ⁻³	2.32×10 ⁻³	3.42×10 ⁻³	1.19×10 ⁻²	7.73×10 ⁻³	2.0
锰 (mg/L)	0.120	0.559	0.342	8.93×10 ⁻²	4.81×10 ⁻²	1.50
锌 (mg/L)	4.78×10 ⁻³	7.26×10 ⁻³	8.83×10 ⁻³	4.19×10 ⁻³	2.05×10 ⁻³	5.00
铝 (mg/L)	4.34×10 ⁻²	1.79×10 ⁻²	1.71×10 ⁻²	5.31×10 ⁻²	7.02×10 ⁻²	0.50
钠 (mg/L)	9.20	15.6	13.8	31.2	5.02	400
镉(mg/L)	1.28×10 ⁻⁴	3.63×10 ⁻⁴	4.30×10 ⁻⁴	1.85×10 ⁻⁴	1.18×10 ⁻⁴	0.01
铅 (mg/L)	3.89×10 ⁻⁴	1.64×10 ⁻⁴	1.74×10 ⁻⁴	2.56×10 ⁻⁴	1.91×10 ⁻⁴	0.10
挥发酚 (mg/L)	< 0.0003	<0.0003	<0.0003	0.0014	0.0015	0.01
阴离子表 面活性剂 (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	0.3

备注

标准限值参照《地下水质量标准》(GB/T 14848-2017)中的类标准IV类。

地下水检测

607		为[2] 1. (1)(4)(A)(4)(4)	6.4		_91 U
样品名称	样品性状	样品编号	检测项目	检测结果	单位
He was the second	5°	Control of the second	碘化物	<0.05	mg/L
RBS2210020-1020-S-1-1	无色透明液体	EN22100331W01	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	High Trail		碘化物	< 0.05	mg/L
RBS2210020-1020-S-2-1	无色透明液体	EN22100331W02	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	HO ETES	EN22100331W03	碘化物	< 0.05	mg/L
RBS2210020-1020-S-3-1	无色透明液体		石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	5 72 E	6. 10 Ld	碘化物	< 0.05	mg/L
RBS2210020-1020-S-4-1	无色透明液体	EN22100331W04	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
RBS2210020-1020-S-5-1	A CONTRACTOR	10 10°	碘化物	< 0.05	mg/L
	无色透明液体	EN22100331W05	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L

表8.2-3 地下水二噁英类检测结果

样品编号	样品名称	样品性状	二噁英类总毒性当 量(TEQ)质量浓度 (pg/L)
RBSH2210106-1031-S-1-1	RBS2210020-1026-S-1-1	无色透明	0.59
RBSH2210106-1031-S-2-1	RBS2210020-1026-S-2-1	无色透明	0.63
RBSH2210106-1031-S-3-1	RBS2210020-1026-S-3-1	无色透明	0.52
RBSH2210106-1031-S-4-1	RBS2210020-1026-S-4-1	无色透明	0.77
RBSH2210106-1031-S-5-1	RBS2210020-1026-S-5-1	无色透明	0.67

根据检测结果可知,该企业地下水指标均符合《地下水质量标准》(GB/T14848-2017)中的IV类标准值;二噁英检出浓度最大值仅0.77pg/L,对周边环境影响较小。

8.2.3 2023地下水检测结果

2023年地下书检测结果如下表所示:

表8.2-4 2023年地下水检测结果

检测点位 采样日期 采样时间	W1 12.05 15:03	W2 12.05 14:48	W3 12.05 14:39	W4 12.05 14:55	W0 12.05 14:29	- 标准 - 限值	达标情况
样品性状	无色透明	无色透明	无色透明	 无色透明	上 无色透明		
pH 值 (无量纲)	7.2	7.4	7.4	7.3	6.7	5.5≤pH<6.5, 8.5 <ph≤9.0< td=""><td>达标</td></ph≤9.0<>	达标
铁 (mg/L)	1.29×10 ⁻²	8.94×10 ⁻³	5.72×10 ⁻³	2.37×10 ⁻³	2.65×10 ⁻³	2.0	达标
锰 (mg/L)	4.48×10 ⁻²	7.77×10 ⁻²	2.83×10 ⁻²	0.29	0.51	1.50	达标
铜(mg/L)	6.54×10 ⁻³	1.71×10 ⁻³	4.04×10 ⁻³	1.44×10 ⁻³	1.18×10 ⁻³	1.50	达标
锌 (mg/L)	4.09×10 ⁻²	2.03×10 ⁻²	1.43	0.29	0.10	5.00	达标
铝 (mg/L)	8.42×10 ⁻²	5.02×10 ⁻²	5.02×10 ⁻²	3.14×10 ⁻²	2.32×10 ⁻²	0.50	达标
钠 (mg/L)	62.8	10.5	84.0	23.4	6.04	400	达标
镉(mg/L)	4.44×10 ⁻⁴	7.80×10 ⁻⁵	3.16×10 ⁻⁴	1.30×10 ⁻⁴	7.30×10 ⁻⁵	0.01	达标
铅(mg/L)	1.14×10 ⁻²	9.71×10 ⁻⁴	9.30×10 ⁻³	2.00×10 ⁻³	2.35×10 ⁻³	0.10	达标
总铬(mg/L)	1.66×10 ⁻³	2.07×10 ⁻⁴	1.83×10 ⁻³	3.06×10 ⁻⁴	1.70×10 ⁻⁴	/	达标
铍(mg/L)	4.93×10 ⁻⁴	1.12×10 ⁻⁴	1.62×10 ⁻⁴	1.03×10 ⁻⁴	6.60×10 ⁻⁵	0.06	达标
钴 (mg/L)	5.14×10 ⁻⁴	9.40×10 ⁻⁵	3.88×10 ⁻⁴	1.16×10 ⁻⁴	1.68×10 ⁻³	0.10	达标
铊(mg/L)	6.76×10 ⁻⁴	1.69×10 ⁻⁴	3.18×10 ⁻⁴	1.68×10 ⁻⁴	1.09×10 ⁻⁴	0.001	达标
镍(mg/L)	3.00×10 ⁻³	6.84×10 ⁻⁴	3.00×10 ⁻³	8.24×10 ⁻⁴	4.32×10 ⁻³	0.10	达标
汞(mg/L)	<4.00×10 ⁻⁵	0.002	达标				

丽水旺能环保能源有限公司土壤、地下水环境自行监测报告

砷 (mg/L)	7.13×10 ⁻⁴	<3.00×10 ⁻⁴	1.82×10 ⁻³	1.28×10 ⁻³	<3.00×10 ⁻⁴	0.05	达标
硒 (mg/L)	<4.00×10 ⁻⁴	0.1	达标				
锑(mg/L)	<2.00×10 ⁻⁴	<2.00×10 ⁻⁴	7.84×10 ⁻⁴	8.75×10 ⁻⁴	<2.00×10 ⁻⁴	0.01	达标
六价铬(mg/L)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.10	达标
可萃取性石油烃							
$(C_{10}-C_{40})$	0.02	0.04	0.06	0.05	0.02	/	
(mg/L)							
备注 标准限值参照《地下水质量标准》(GB/T 14848-2017)中的类标准IV类。				/类。			

表8.2-5 地下水二噁英类检测结果

样品编号	样品名称	样品性状	二噁英类总毒性当量(TEQ)质量 浓度(pg/L)
RBSH2306027-0612-S-1-1	RBS230648-0609-S-1-1	无色透明	0.41
RBSH2306027-0612-S-2-1	RBS230648-0609-S-2-1	无色透明	0.24
RBSH2306027-0612-S-3-1	RBS230648-0609-S-3-1	无色透明	0.27
RBSH2306027-0612-S-4-1	RBS230648-0609-S-4-1	无色透明	0.21
RBSH2306027-0612-S-5-1	RBS230648-0609-S-5-1	无色透明	0.38

8.2.4 监测结果分析

根据2022年初次监测结果分析,丽水旺能地下水各点位的重金属、挥发性有机物、半挥发性有机物、二噁英、石油烃(C10~C40)均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。

由于初次监测中未出现超标的污染物,因此2023年后续地下水仅对特征污染物进行了检测,根据检测结果,地下水个点位重金属、石油烃(C10~C40)、二噁英均满足《地下水质量标准》(GB/T14848-2017)中的IV类标准值。

9质量保证与质量控制

9.1 自行监测质量体系

自行监测各个阶段都要进行质量控制,包含监测方案编制、样品采集、保存、 流转、检测过程及结果分析;各环节质量保证与控制要求见以下内容。

9.2 监测方案制定的质量保证与控制

- (1) 监测方案编制过程要求资料收集齐全、人员访谈步骤不可少;
- (2) 监测指标考虑企业历史生产情况;
- (3) 监测点位要求方案编制人员与企业代表现场确认。
- (4) 方案编制完成后,编制单位实行两级审核,经请有经验的专家进行评审。

9.3 样品采集、保存、流转、制备与分析的质量保证与控制 9.3.1 样品采集前的质量控制

采样组在采样前需做好相关的培训、防护、设备维护、人员分工、现场定点 等工作。填写采样前准备事项一览表。采样前的质量控制工作主要包括:

- (1) 对采样人员进行专门的培训,采样人员应掌握采样技术、懂得安全操作的有关知识和处理方法;
 - (2) 在采样前应该做好个人的防护工作,佩戴安全帽和一次性防护口罩;
- (3)根据自行监测方案,准备采样计划单、钻探记录单、土壤采样记录单、 地下水采样记录单、样品追踪单及采样布点图;
- (4) 准备手持式 GPS 定位仪、相机、样品瓶、标签、签字笔、保温箱、 干冰、橡胶手套、岩芯箱、采样器等;
 - (5) 确定采样设备和台数;
 - (6) 进行明确的任务分工;
- (7) 现场定点,依据布点检测方案,采样前一天或采样当天,进行现场踏勘工作,采用手持式 GPS 定位仪、小旗子、喷漆等工具在现场确定采样点的具体位置和地面标高,在现场做记号,并在图中相应位置标出。

9.3.2 样品采集过程中的质量控制

现场样品采集过程中的质量控制工作主要包括:

- (1) 防止采样过程中的交叉污染。钻机采样过程中,在两个钻孔之间的钻探设备应进行清洁,同一钻机不同深度采样时应对钻探设备、取样装置进行清洗,与土壤接触的其他采样工具重复利用时也应清洗。
- (2) 现场采集样品过程中,应该详细说明现场观察的资料,比如土壤层的深度,沉积物的颜色,分界线类型,土壤质地,气味,水的颜色,气象条件,以便用于后期详细采样和地块修复工作。当样品从场地转入清洁样品容器时,应该保持采样设备的清洁;当不用采样设备进行采样或对采样设备保存时,应该对采样设备进行清洗,防止样品的交叉感染。
- (3) 现场采样时详细填写现场记录单,包括采样土壤深度、土壤质地、气味、XRF测试数据等,以便为后续分析工作提供依据。为确保采集、运输、贮存过程中样品质量。依据相关技术要求,本项目在采样过程中,采集不低于10%的平行样。

9.3.3 样品流转质量控制

样品流转过程中的质量控制工作主要包括:

- (1)装运前核对,在采样现场样品必须逐件与样品登记表、样品标签和采样记录进行核对,核对无误后分类装箱;
 - (2)运输中防损,运输过程中严防样品的损失、混淆和玷污。
- (3)样品的交接,由样品管理和运输员将土壤样品送到检测实验室,送样者和接样者双方同时清点核实样品,并在样品交接单上签字确认,样品交接单由双方各存一份备查。
- (4)不得将现场测定后的剩余水样作为实验室分析样品送往实验室,水样装箱前应将水样容器内外盖盖紧,装箱时应用泡沫塑料或波纹纸板垫底和间隔防震。样品运输过程中应避免日光照射,气温异常偏高或偏低时还应采取适当保温措施。

9.3.4 样品制备质量控制

样品制备过程的质量控制主要在样品风干和样品制样过程中进行,土壤风干室和土壤制样室相互独立,并进行有效的隔离,能够避免相互之间的影响。土壤制样室是在下吸风通风柜中内进行,每次制样后进行清理,避免样品之间相互干扰和影响。

制样过程中的质量控制:

- (1) 保持工作室的整洁,整个过程中必须戴一次性防护手套;
- (2) 制样前认真核对样品名称与流转单中名称是否一一对应;
- (3) 人员之间进行互相监督,避免研磨过程中样品散落、飞溅等;
- (4)制样工具在每处理一份样品后均进行擦抹(洗)干净,严防交叉污染;
- (5) 当某个参数所需样品量取完后,及时将样品放回原位,供实验室其它部门使用。
- (6)提供样品风干或冻干、磨碎、分筛等前处理的全过程记录及图片作证材料。

9.3.5 样品保存质量控制

样品保存过程中的质量控制工作主要包括:

- (1) 样品保存按样品名称、编号和粒径分类保存。
- (2)新鲜样品,用密封的聚乙烯或玻璃容器在4℃以下避光保存,样品要充满容器。
 - (3) 预留样品在样品库造册保存。
- (4)分析取用后的剩余样品,待测定全部完成数据报出后,也移交样品库保存。
 - (5) 分析取用后的剩余样品一般保留半年, 预留样品一般保留2年。
- (6)新鲜样品保存时间参照《土壤环境质量评价技术规范》(HJ/T 166-2004) 中表9-1。
- (7) 现场采样时详细填写现场观察的记录单,比如土层深度、土壤质地、 气味、颜色, 地下水的颜色、气味, 气象条件等, 以便为分析工作提供依据。
 - (8) 为确保采集、运输、贮存过程中的样品质量,本项目在现场采样过程

中设定现场质量控制样品,主要为现场平行样,共采集 3 份现场平行样。

9.3.6 实验室分析质量控制

实验室的质量保证与质量控制措施包括:分析数据的追溯文件体系、样品保存运输条件保证、内部空白检验、平行样加标检验、基质加标检验、替代物加标检验,相关分析数据的准确度和精密度需满足以下要求:

- 1、实验室从接样到出数据报告的整个过程严格执行CNAL/AC01:2003《检测和校准实验室认可准则》体系和计量认证体系要求。
- 2、样品的保留时间、保留温度等实验室内部质量保证/控制措施均需有纸质记录并达到相关规定的要求。
- 3、实验室分析过程中的实验室空白、平行样、基质加标数据检验。要求分析结果中平行盲样的相对标准偏差均在要求的范围内,实验室加标和基质加标的平行样品均在要求的相对百分偏差内。
- 4、空白实验。每批次样品(每20个样品为一批次)应至少作一个全程序空白和实验室空白,目标化合物的浓度应低于检出限。
- 5、平行样测定。每批样品应进行不少于5%的平行样品测定,95%以上的平行双样测定结果相对偏差应在100±20%以内。
- 6、空白加标。每批样品应进行不少于 5%的空白加标回收率测定,加标回收率应在70%~130%以内。
- 7、替代物加标回收率测定。每批样品应进行不少于 5%的替代物加标回收率测定,加标回收率应在70%~130%。

10 总结论

10.1 监测结论

(1) 土壤

根据 2022 年初次监测结果分析,丽水旺能土壤各点位的重金属、挥发性有机物、半挥发性有机物、二噁英、石油烃(C₁₀~C₄₀)均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。由于初次监测中未出现超标的污染物,因此 2023 年后续土壤仅对特征污染物进行了检测,根据检测结果,二噁英、石油烃(C₁₀~C₄₀)均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。

(2) 地下水

根据 2022 年初次监测结果分析,丽水旺能地下水各点位的重金属、挥发性有机物、半挥发性有机物、二噁英、石油烃(C10~C40)均满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地风险筛选值。由于初次监测中未出现超标的污染物,因此 2023 年后续地下水仅对特征污染物进行了检测,根据检测结果,地下水个点位重金属、石油烃(C10~C40)、二噁英均满足《地下水质量标准》(GB/T14848-2017)中的IV类标准值。

10.2 企业针对监测结果拟采取的主要措施及原因

- (1)建立隐患排查制度,加强隐患排查,一定时间内对特定生产项目、特定区域或特定材料进专项巡查,如生产区、贮罐区、公用工程区、地下设施等识别泄露、扬撒和溢漏的潜在风险,如有泄露,及时消除隐患,并做好检查记录,尽可能减少土壤和地下水被污染的风险。
- (2) 企业加强落实后续自行检测,强化管理,减少"跑冒滴漏",加强生产区防渗防漏,按照要求和规范每年对生产场地开展土壤、地下水环境监测。
- (3) 在场地后续使用过程及新改扩建项目中,建议企业规范作业,进一步做好三废管理,避免相关物料泄漏污染场地土壤及地下水环境。

附件

附件 1 检测单位资质证明

检验检测机构 资质认定证书

证书编号:181112052297

名称: 浙江瑞博思检测科技有限公司

地址:浙江省杭州市西湖区三墩镇金蓬街 366 号 2 幢 503 室

经审查, 你机构已具备国家有关法律、行政法规规定的基本 条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和 结果,特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。 你机构对外出具检验检测报告或证书的法律 责任由浙江瑞博思检测科技有限公司承担。

许可使用标志

181112052297

有效日期:

发证机关:

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

附件 2 2021 年土壤、地下水检测报告

检测报告说明

- 1、本报告无本公司检验检测专用章和骑缝章无效。
- 2、报告内容需填写齐全,无审核、签发者签字无效。
- 3、报告需填写清楚,涂改无效。
- 4、本报告仅对检测时的工况有效。
- 5、由委托单位自行采集的样品,仅对送检样品检测数据负责, 不对样品来源负责。
- 6、本报告未经同意不得用于广告宣传。
- 7、复制本报告中的部分内容无效。

单位名称:浙江华普环境科技有限公司金华分公司 电话: 0579-82955526

地 址:浙江省金华市婺城区神丽路 666 号综合楼 4-6 层

 丽水旺能环保能源有限公司土壤及地下水自行监测委托检测报告

华普检测 (2021-10) 第 J214212 +

检测报告

TEST REPORT

样品类别	地下水、土壤	检测类别	委托检测
委托方及地址	浙江同泽环境科技有限	公司 丽水市莲都区	丽南花苑 1 幢副楼 210 室
受检方及地址	丽水旺能环保能源有門	長公司 丽水	市莲都区水阁镇潘田村
委托日期 202	21.10.23		100
采样方_浙江	华普环境科技有限公司分	金华分公司 采样日期	2021.10.25-2021.10.31
采样地点地	下水 (2A01 焚烧烟气处	理系统西面, 氨水罐	区北面绿化区域、2B01 渗
滤液处理站东侧	厂区道路旁、2E01 背景	点);土壤(1A01 生	活垃圾库西面厂区道路每
化区域(0m-0.5m)	、1A01 生活垃圾库西	面厂区道路绿化区域(1	.5m-2.0m)、1A01 生活均
极库西面厂区道路	各绿化区域(2.5m-3.0m)	、1A02 焚烧烟气处理系	系統西面, 氨水罐区北面線
化区域(0m-0.5m)	、1A02 焚烧烟气处理;	系统西面,氨水罐区北	面绿化区域(1.2m-1.7m)、
1A02 焚烧烟气处	理系统西面。氨水罐区:	比面绿化区域(3.0m-3.5	m)、1B01 渗滤液处理站
东侧厂区道路旁((Om-0.5m)、1B01 渗滤剂	变处理站东侧厂区道路	旁(1.3m-1.8m)、1B01 渗
滤液处理站东侧	厂区道路旁(3.0m-3.6m)、1B02 渗滤液处理	2站西侧、厂区外绿地旁
(0m-0.5m) , 1B0	2 渗滤液处理站西側、厂	区外绿地旁(2.1m-2.6	m),1B02 渗滤液处理站
西侧、厂区外绿地	2旁(3.5m-4.0m)、1E01	背景点(0m-0.5m) 、1	E01 背景点(2.0m-2.5m)、
1E01 背景点(3.0m	-3.5m))		
检测地点	现场及实验室	分析日期	2021.10.25-2021.11.12
一、项目分析方	法		

检测方法依据
生活饮用水标准检验方法 感官性状和物理循标 GB/T 5750.4-2006
生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006
生活效用水标准检验方法 感官性状和物理模标 GB/T 5750.4-2006

浙江华普环境科技有限公司金华分公司

第1页共23页

丽水旺能环保能源有限公司土壤及地下水自行临潮委托检测报告

华普检测 (2021-10) 第 J214212 号

续.	上表	
美别	检测项目	检测方法依据
	浑浊度	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006
	pH值	水质 pH 值的测定 电极法 HJ 1147-2020
	总硬度	水质 钙和镁总量的测定 EDTA 浦定法 GB 7477-1987
	溶解性 总固体	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006
	硫酸根	水质 无机阴离子 (F°、Cl°、NO ² 、Br、NO ³ 、PO ₄ ³ 、SO ₃ ² 、SO ₄ ²)的测定 离子色谱 法 HJ 84-2016
	氣离子	水质 无机阴离子 (F、Cl、NO ² 、Br、NO ³ 、PO ₄ ² 、SO ₃ ² 、SO ₄ ²)的测定离子色谱法 HJ 84-2016
	铁	本质 铁、锰的测定 火焰原子吸收分光光度法 GB 11911-1989
	锰	水质 铁、锰的测定 火焰原子吸收分光光度法 GB [1911-1989
	钟	水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB 7475-1987
地下	48	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006
水	挥发酚	水质 挥发酚的测定 4.氨基安替比林分光光度法 HJ 503-2009
Ý	阴离子表 面活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB 7494-1987
	耗氧量	生活饮用水标准检验方法 有机物综合指标 GB/T 5750.7-2006
	氨氮	水质 氨氨的潮定 纳氏试剂分光光度法 HJ 535-2009
	硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 GB/T 16489-1996
	钠	水质 钾和钠的测定 火焰原子吸收分光光度法 GB 11904-1989
	菌落总数	生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006
	总大肠菌 群	多管发酵法《水和废水监测分析方法(第四版增补版)国家环保总局 (2006 年)
6	硝酸盐 (氟)	水质 硝酸盐氨的测定 紫外分光光度法 (试行) HJ/T 346-2007
50	亚硝酸盐 (氨)	水质 亚硝酸盐氨的测定 分光光度法 GB 7493-1987

浙江华普环境科技有限公司金华分公司

第 2 页 共 23 页

丽水旺能环保能源有限公司土壤及地下水自行监溯委托检测报告

华普检测(2021-10)第 J214212 号

续。	上表	and the second s
美别	检测 項目	检测方法依据
	氧化物	水质 氟化物的测定 容量法和分光光度法 HJ 484-2009
	碘化物	水质 碘化物的测定 离子色谱法 HJ778-2015
	裁离子	水质 无机阴离子 (F'、Cl'、NO ² 、Br'、NO ⁵ 、PO4 ³ 、SO3 ² 、SO4 ²)的测定 离子6 谱法 HJ 84-2016
	(总) 乘	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
	(总) 神	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
	(总) 箱	水质 乘、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
	執	石墨炉原子吸收法《水和废水监测分析方法》(第四版增补版) 国家环保总局 (200 年)
	\$0	石墨炉原子吸收法《水和废水监测分析方法》(第四版增补版) 国家坏保总局 (200 年)
	六价铬	水质 六价格的测定 二苯磺酰二肼分光光度法 GB/T 7467-1987
地下	镍	生活效用水标准检验方法 金属指标 GB/T 5750.6-2006
水	柳	水质 铜、锌、铅、锔的测定 原子吸收分光光度法 GB 7475-1987
	- 東乙烯	
	1,1-二氯乙 烯	
	二氯甲烷	
	反-1,2-二氟 乙烯	
	1,1-二氟乙 烷	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012
	順-1,2-二歳 乙烯	
	表仿	
	1,2-二氟乙 烷	
9	1,1,1-三氟 乙烷	

浙红华普环境科技有限公司金华分公司

第 3 页 共 23 页

	块。	上表		
	美别	检测 項目	检测方法依据	
		四氟化碳		
		苯		
		1,2-二氟丙 烷		
		三氟乙烯		
	1	1,1,2-三氟 乙烷		
		甲苯		
		四氟乙烯		
		1,1,1,2-四 衰乙烷		
		氣苯	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012	
	地	乙苯		
	下水	间,对-二甲 苯		
	1/3	苯乙烯		
		1,1,2,2-四 氧乙烷		
do		邻-二甲苯		
16.00		1,2,3-三氟 丙烷		
		1,4-二氨苯		
		1,2-二氟苯		
		苯胺	水质 苯胺美化合物的测定 气相色谱-质谱法 HJ 822-2017	
	A	2-彖酚	水质 酚类化合物的测定 液液萃取/气相色谱法 HJ 676-2013	
	18	苯并(k)类 蒽	水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法 HJ 478-200	09

第 4 页 共 23 页

浙江华普环境科技有限公司金华分公司

类	上表	07
剃	项目	检测方法依据
	间,对-二甲 苯	The second second
	邻-二甲苯	William 1
	1,2-二氟丙烷	
	氣甲烷	
	衰乙烯	
	二氟甲烷	
	四氟化碳	
	1,1-二氟乙烷	
	1,2-二氟乙烷	
土壤	1,1,1-三氟乙 烷	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 605-2011
	1,1,2-三氟乙 烷	
	1,1,2,2-四東, 乙烷	
	1,1,1,2-四氣	
	1,2,3-三氯丙 烷	
	1,1-二氟乙烯	
	反-1,2-二氯 乙烯	A STATE OF THE STA
	順-1,2-二氟 乙烯	10° ×
6	三氟乙烯	V.
800	四氯乙烯	

图水旺能环保能源有限公司土壤及地下水自行监测委托检测报告

华普检测 (2021-10) 第 J214212 号

上	表	
别	检測 項目	检测方法依据
	氨苯	1994
	氣仿	and the second second
	1,4-二氟苯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 605-2011
	1,2-二泉苯	
V	2-贏酚	
	茶	
	苯并 (a) 蒽	
	藺	
	苯并 (b) 荧蒽	
壤	苯并 (k) 荧蒽	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 834-2017
	苯并(a) 芘	
	茚并 (1,2,3-cd) 芘	
	二苯并 (a, h) 蒽	
	硝基苯	
	六价铬	土壤和沉积物 六价格的測定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019
	苯胺	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附录 K
	石油烃 (C ₁₀ -C ₄₀)	土壤和沉积物 石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法 HJ 1021-2019
	pH 值	土壤 pH 值的测定 电位法 HJ 962-2018
18	二噁英类	土壤和泥积物 二噁英美的測定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ77.4-2008

注:地下水中可萃取性石油烃(C10·C40), 2·氟酚、苯并(k)荧蒽、萘、苯并(b)荧蒽、苯并(a)芘、苯并(a)葸、脂、茚并(1,2,3·cd)芘、二苯升(a,b)蒽、硝基苯、一氨甲烷、苯胺的检测结果引用浙江中通检测科技有限公司检测报告检宁第 ZTE202113219号,资质认定证书编号 151121341561; 二噁英类的检测结果引用浙江中递检测科技有限公司检测报告检宁第 ZTE202112755号,资质认定证书编号 151121341561。

浙江华普环境科技有限公司金华分公司

第7页共23页

ıí	地下水检测结果	(10月31日采样)	3条样)									
华	_	項目名称性技術技	(A)	奥和咪	海海 (NTU)	内原可见物	pH 值 (无量纲)	表表表 (以CaCO) 计/(mad 1)	海 高 高 高 条	完設律 (mg/L)	&為子 (mg/L)	和表量 (mg/L)
10	2A01 焚烧烟气处理系统而面, 氨水螺医北面缝化区域 (XS J214212-211031 I#-1)	济, 无色	\$	¥	<0.5	Å.	7.8	266	395	823	28.1	1.14
02	2B01 渗滤液处理站赤侧厂 区道路旁 (XS J214212-211031 2#-1)	济, 无色	\$	*	<0.5	*	7.6	97.1	372	7.68	143	97.0
03	2E01 增素点 (XS J214212-211031 3#-1)	清、无色	\$	*	<0.5	*	7.2	41.2	327	3.31	2.38	0.74
中世	_	項目名称 性状静迷	(mg/L)	€£ (mg/L)	样友龄 (mg/L)	表系 (mg/L)	硫化物 (mg/L)	## (mg/L)	東馬酸盐 (東)	表离子 (mg/L)	所数盐(泉)	系化物 (mg/L)
10	2A01 焚烧烟气处理系统尚 面, 氨水罐区北面绿化区域 (XS J214212-2110311#-1)	清、无色	60:0	0.24	<0.0003	0.056	<0.005	7.73	0.100	0,314	(mg/L) 0.52	<0.004
02	2B01 渗滤液处理站东侧厂 区道路旁 (XS J214212-211031 2#-1)	清、无色	0.12	0.07	<0.0003	0.079	<0.005	5.73	0.007	0.243	69'0	<0.004
03	2E01 背景点 (XS J214212-211031 3#-1)	清、无色	0.03	10.0	<0.0003	0.038	<0.005	5.48	0.008	0.185	69'0	<0.004
安安		項目名称性状務送	总大肠菌科 (MPN/100ml)	商券总数 (CFU/ml)	兼化物 (mg/L)	本 会 (mg/L)	44 (µg/L)	* (hg/L)	編 (mg/L)	Ag (Hg/L)	明鳴子表 南洛佳剤	## (mg/L)
0	2A01 焚烧烟气处理系统两面, 氨水罐医北面绿化区域 (XS J214212-211031 1井1)	清、无色	本格出	34	<0.002	<0.004	9.0	<0.04	3.9×10 ⁻³	<0,4	(mg/L)	0.16
02	2B01 渗滤液处理站未倒厂 区道路旁 (XS J214212-211031 2#-1)	清、无色	木	35	<0.002	<0.004	0.5	<0.04	8.8×10 ⁻⁴	<0.4	<0.05	<0.05
03	2E01 背景点 (XS J214212-211031 3#-1)	清、无色	木松出	46	<0.002	<0.004	<0.3	<0.04	>01×0*1>	<0.4	<0.05	<0.05

续上表	**			1				1		C	7214717 2
中女	采祥地点(样品编号) 送祥方自述	為日名存在扶衛等	## (mg/L)	能 (mg/L)	(mg/L)	45 (mg/L)	* (Hg/L)	一条平龙 (ug/L)	新乙烯 (Jun)	1.1-1戦	二氟甲烷(110/1)
10	2A01 焚烧烟气烧埋系统西面, 氨水罐医北面绿化区域 (XS)214212-211031 +1)	- 8	0.41	<0.008	<0.005	<0.001	<0.057	<0.65	\$ T	(µg/L)	\range (1.0
05	2B01 渗滤液处理站东侧厂 区道路旁(XS J214212-211031 2#-1)	清、无色	90.0	<0.008	<0.005	<0.001	<0.057	<0.65	<1.5	<12	0.1>
03	2E01 育录点 (XS J214212-211031 3#-1)	济、无色	<0.05	<0.008	<0.005	<0.001	<0.057	<0.65	<1.5	<1.2	<1.0
平平	采料地点 (样品编号) 这样方自述	通目名称 住状結果	成-1,2-1 表こ落 (ug/L)	1,1-二系 乙烷(µg/L)	版-1,2-二 象乙塔 (uo/l)	&.15 (µg/L)	1,2二条 乙烷(μg/L)	1,1,1-三泉 こ坑(μg/L)	四氯化磺 (ug/L)	# (mg/L)	1,2-二歳 丙烷
10	2A01 焚烧烟气处理系统尚 面, 氨水罐区北面绿化区线 (XS J214212-211031 1#-1)	清、光色	77	<1.2	<1.2	4.	4.1>	4.1>	4.5	4.14	(µg/L)
02	2B01 孝逃液处理站來觸厂 区道路旁 (XS J214212-211031 2#-1)	清、无色	7.	<1.2	△.2	4.14	4.12	4.12	<1.5	4.14	△2
03	2E01 背景点 (XS J214212-211031 3#-1)	清、无色		<1.2	<1.2	4.1>	4.14	4.12	≥	4.1>	△12
世中	采样地点 (样品编号) 选样方自述	鱼目名称作技術技術	三泉乙烯 (中g/L)	1,1,2-三系 乙烷 (uo/L)	章 (hg/L)	四泉乙烯 (μg/L)	1,1,1,2-四 象乙烷	A.米 (µg/L)	(孔)が() 実つ	何,对-二甲 苯 (ug/L)	業C体 (ue/L)
10	2A01 焚烧烟气处理系统两面, 氨水罐区北面绿化区域 (XS)214212-211031 f-1)	清、无色	<12	515	4.1>	<1.2	< Color Color	<1,0	40.8	42	900
02	2B01 孝德液处理站东侧厂 区道路旁 (XS J214212-211031 2#-1)	清、无色	<1.2	<1.5	4.1>	7	\ \$.	<1.0	8.0>	42	9.0>
03	2E01 增景点 (XS J214212-211031 3#-1)	清、无色	<1.2	<1.5	4.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \	-	900	04	4

93

浙江华普环境科技有限公司金华分公司

				r de		1	A. A.		
1214212 년	業并(a)整 (μg/L)	<0.012	<0.012	<0.012	7	1/4	,	,	(23 M
华普检测(2021-10)第 2214212 号	# (µg/L)	<0.012	<0.012	<0.012	5 油烃 (mg/L)	-	= .	9 =	第 10 页 共23 页
华普松鄉	斯基苯 (ug/L)	<0.17	<0.17	<0.17	 可革取性 石油烃 (Clo-Ca) (mgL)	<0.01	10.0>	<0.01	
1	2-紀醇 (µg/L)	₹	7	₹	二苯并 (a,h)憋 (µg/L)	<0.003	<0.003	<0.003	28
THE PARTY NAMED IN	(μg/L)	8.0>	8.0>	8.0>	等并 (1,2,3-cd) 花(µg/L)	<0.005	<0.005	<0.005	
	1,4-二氟苯 (µg/L)	<0.8	40.8	<0.8	苯并(a)芘 (μg/L)	<0.004	<0.004	<0.004	
	1,2,3-三. 丙烷 (μg/L)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	41.2	<1.2	苯并(K) 炭葱 (μg/L)	<0.004	<0.004	<0.004	
V	年二甲来 (μg/L)	4.	4.	4.4	朱井(b) 茨惠 (μg/L)	<0.004	<0.004	<0.004	14
托檢測报告	1,1,2,2-四 象乙烷 (µg/L)	7	4,1	7	(T/8rl)	<0.005	<0.005	<0.005	150
下水自行监测委	城田名称 性状指述	清、无色	济, 无色	清, 无色	项目名称 性状描述	清、无色	济, 无色	佛, 无色	
層水旺能环保能源有限公司土壤及地下水自行盐鷚委托檢测报告 或上表	朱祥地点 (样品稿号) 这样方自述	2A01 焚烧烟气处理系统 药面, 氨水罐区走面绿化 医境 (XS)214212-211031 I#-1)	2B01 李德液处理站车侧 厂区道路旁 (XS J214212-211031 2#-1)	2E01 增養点 (XS J214212-2110313#-1)	来释地底 (样品编号) 这样方自述	2A01 焚烧烟气处理系统 药而, 氨水罐区北面绿化 医境 (XS J214212-211031 I#-1)	2B01 李滤液处理站车侧 厂区道路旁 (XS J214212-211031 2#-1)	2E01 背景点 (XS J214212-211031 3#-1)	浙江华巷环境科技有限公司金华分公司
開水旺埃上表	安安	10	05	03	安华	10	02	03	五經

					100	100		N. Carlot	Br.		
214212 43	1職等()	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10 ⁻³	<1.0×10³	<1.0×10-3	23 M
华普检测(2021-10)第1214212号			<1.0×10 ⁻³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10 ⁻³	第 11 页 共 23 页
华普检测 G	单位: mg/kg (oH 值.	象 甲拢	<1.0×10 ⁻³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	<1.0×10³	
	18	与	0.053	0.050	0.050	0.057	0.051	0.064	0.078	0.062	
		割	8.88	8.14	7.69	8.54	630	7.32	7.63	11.7	48
THE PARTY		韓	22	20	2	35	34	38	30	21	<u> </u>
		蘊	0.12	0.16	0.10	0.25	0.16	0.14	0.22	0.17	
		#	22	25	23	47	31	37	30	20	
	18	Æ	59	36	35	46	38	4	24	31	0
行监测委托检测报告	10月25日条样)	通日名称性状描述	黄棕色、中壤土	黄棕色,中壤土	暗棕色、金壤土	黄松色、中壤土	黄棕色、中壤土	暗棕色、童壤土	黄棕色、中壤土	暗棕色、重壤土	
TO 1	土壤检測结果(来释地点(祥品编号)	1A01 生活垃圾库局面厂区道路 堆化区域(0m-0.5m) (T.1214212-2110251#-1)	1A01 生活垃圾库局面厂区道路 绿化区域(1.5m-2.0m) (T.3214212-211025.1#-2)	1A01 生活垃圾库商面厂区道路 标化区域(2.5m-3.0m) (TJ214212-211025 1#3)	1A02 焚烧烟气处理系统西面, 氨 水罐区北面绿化区域(0m-0.5m) (T J214212-211025 2#-1)	1A02 焚烧烟气处理系统南面,氨 水罐区北面绿化区域(1.2m-1.7m) (T.J214212-211025 2#-2)	1A02 焚烧烟气处理系统西面, 氨 水罐区北面绿化区域(3.0m-3.5m) (T J214212-211025 2#-3)	1B01 渗滤液处理站系侧厂区道路 旁(0m-0.5m) (T J214212-211025 3#-1)	1B01 渗滤液处理站系制厂区道路	浙江华普环境科技有限公司金毕分公司
# 1	ní 🖠	サ		6	ti.		02		8	S	差

日 energial M. (0111007) 医骨部型	2174177 08 (01-1707) BOOM H.J.	必米 教中院 地乙烯 1,1-二美	0.106 <1.0×10³ <1.0×10³ <1.0×10³	0.062 <1.0×10³ <1.0×10³ <1.0×10³	0.064 <1.0×10³ <1.0×10³ <1.0×10³	0.059 <1.0×10 ⁻³ <1.0×10 ⁻³ <1.0×10 ⁻³	0.087 <1.0×10³ <1.0×10³ <1.0×10³	0.057 <1.0×10³ <1.0×10³ <1.0×10³	2
		中心	20 6.87	27 7.49	27 8.26	59 11.0	46 7.86	31 6.05	
	1:	章 章	29 22 0.14	19 33 0.22	18 35 0.16	28 55 0.13	22 19 0.21	20 32 0.16	30
司士肇及地下水自行监测委托检测报告		项目名称 性状構造	赔偿色、重煤土	黄棕色、中壤土	黄棕色、中壤土	略棕色、重煤土	養棕色、中壤土	籍徐色、重集土	· · · · · · · · · · · · · · · · · · ·
期本旺億环保經鑽有限公司土壤及地下水自	维上表	米祥池点(祥昭翰号)	1B01 孝總液校理結束側厂医進路	1B02 渗滤液处理站而倒、厂区外 棒地旁(0m-0.5m) (T J214212-211025 4#-1)	1B02 孝慈液处理結而側、厂区外 排地旁(2.1m-2.6m) (T J214212-211025 4#-2)	1B02 孝德液处理站而倒、厂区外 绿地旁(3.5m-4.0m) (T1214212-211025 4#-3)	IE01 脊景点(0m-0.5m) (T J214212-211025 5#-1)	1E01 有录。这(2.0m-2.5m) (T J214212-211025 5#-2)	1E01 常景点(3.0m-3.5m)
器	#	安中	03	100	94		37	05	

浙江华鲁环境科技有限公司金华分公司

华春检测 (2021-10) 第 J214212 号

層本旺能环保能源有限公司土壤及地下水自行监测委托检测报告

<1.9×10⁻³ <1.9×10⁻³ <1.9×10⁻³ <1.9×10⁻³ <1.9×10⁻³ <1.9×10⁻³ <1.9×10⁻³ <1.9×10⁻³ ₩ <1.2×10³ <1.3×10³ <1.1×10⁴ <1.3×10³ <1.3×10⁴ <1.3×10³ <1.3×10⁻³ <13×10³ <13×10³ <1.3×103 <1.3×10⁻³ <1.3×10⁻³ <1,3×10³ 四氟化碳 <1.3×10⁻³ <1.3×10⁻³ <1.3×10⁻³ <1.3×10⁻³ <1.3×10⁻³ <1.3×10³ <1.3×10⁻³ 1,1,1-三 氟乙烷 1,2-二泉 <1.3×10³ <1.3×10⁻³ <1.3×10³ <1.3×10⁻³ <1.3×10³ <13×10³ <1,3×10° これ <1.1×10⁻³ <1.1×10°3 <1.1×10³ <1.1×10³ <1.1×10⁻³ <1.1×10⁻³ <1.1×10⁻³ 東份 <1.2×10⁻³ <1,3×10⁻³ <1.2×10⁻³ <1.3×10⁻³ <1.3×10⁻³ <1.2×10⁻³ <1.3×10⁻³ <1.3×10⁻³ <1.3×10⁻³ <1.3×10⁻³ 東の初 原-1,2-二 <1.2×10⁻³ <1.2×10³ <1.2×10³ <1.2×10³ 11-11 のなり 黄棕色、中壤土 <1.5×10⁻³ <1.4×10⁻³ <1.4×10⁻³ <1.4×10⁻³ <1,4×10³ <1,4×10³ <1.4×10⁻³ <1.4×10³ <1,4×10⁻³ A-1,2-二 表の発 参标色、中填土 <1.5×10⁻³ <1.5×10⁻³ <1,5×10⁻³ <1.5×10⁻³ <1.5×10⁻³ <1.5×10³ <1.5×10⁻³ 二氟甲烷 精棕色,重壤土 黄棕色、中壤土 黄棕色,中壤土 赔标色, 查集土 黄棕色,中壤土 暗棕色, 变壤土 項目名称 性状構建 木權区北面绿化区域(1.2m-1.7m) 1B01 渗滤液处理站卷侧厂区道路 水權区北面绿化区域(3.0m-3.5m) 1B01 渗滤液处理站东侧厂区道路 1A01 生活垃圾库局面厂区道路 1A01 生活垃圾库南面厂区道路 木權区北面緣化区域(0m-0.5m) 生活垃圾库西面厂区道路 1A02 焚烧烟气处理系统西面, IA02 焚烧烟气处理系统西面, IA02 焚烧烟气处理系统西面, (T J214212-211025 1#-3) (T J214212-211025 1#-1) (T J214212-211025 2#-3) (T J214212-211025 1#-2) (T J214212-211025 2#-2) (T J214212-211025 2#-1) (T J214212-211025 3#-1) (T J214212-211025 3#-2) 绿化区域(1.5m-2.0m) 绿化区域(2.5m-3.0m) 采祥地点 (样品编号) 绿化区域(0m-0.5m) 李(1.3m-1.8m) 多(0m-0.5m) 1001 维上表 安中 63 5 8

浙江华普环境科技有限公司金华分公司

第13页共23页

4.1	缘上表		100					9			1	
	朱祥地点 (祥昭辅号)	海日名称 性状描述	1,2二条	三無乙族	1,1,2.三 8,6.校	# B-	四級の海	1,1,1,2-四 氧乙烷	美	× 2	三,年一二	- I alternative
	1B01 李蕊液处理結准側厂区道路	話标色、重煤土	<1.1×10³	<1.2×10 ⁻³	<1.2×10³	<1.3×10³	<1.4×10³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10³	<1.2×10³	
	1B02 渗滤液处理站両側、厂区外 ^{建地} 旁(0m-0.5m) (T J214212-211025 4#-1)	黄棕色、中壤土	<1.1×10³	<1.2×10³	<1.2×10³	<1.3×10 ⁻³	<1,4×10 ⁻³	<1.2×10³	<1.2×10³	<1.2×10³	<1.2×10³	-
	1B02 孝德後处理站両側、厂区外 維地旁(2.1m-2.6m) (TJ214212-211025 4#-2)	黄棕色、中壤土	<1.1×10³	<1.2×10³	<1.2×10³	<1.3×10³	<1.4×10³	<1,2×10³	<1.2×10³	<1.2×10³ <1.2×10³	<1.2×10³	
	1B02 考滤液处理站断侧、广区外 绿地旁(3.5m-4.0m) (TJ214212-211025 4#-3)	精棕色、重壤土	<[.1×10³	<1.2×10³	<1.2×10³	<1.3×10³	<1.4×10³	<1.2×10³	<1.2×10 ⁴	<1.2×10³	<1.2×10³	
	1E01 背景点(0m-0.5m) (T J214212-211025 5#-1)	黄棕色、中壤土	<1.1×10³	<1.2×10³	<1.2×10³	<1.3×10³	<1.4×10³	<1.2×10 ⁻³	<1.2×10³	<1.2×10³	<1.2×10³	
	1E01 青录点(2.0m-2.5m) (T J214212-211025 5#-2)	結標色、重填土	<1.1×10³	<1.2×10³	<1.2×10³	<1.3×10³	<1.4×10³	<1.2×10³	<1.2×10³	<1.2×10³	<1.2×10³	
	IE01 作素点(3.0m-3.5m) (T.J214212-211025.5#-3)	暗棕色、重填土	<1.1×10 ³	<1.1×10³ <1.2×10³	<12×10 ⁻⁸	<1.3×10³	<1.4×10³	<1.4×10³ <1.2×10³	<1.2×10³	<1.2×10+3	<1.2×10 ⁻³	

浙江华普环境科技有限公司金华分公司

第 16 页 共23 页

第 17 页 共23 页

斯江华普环境科技有限公司金华分公司

华普检测 (2021-10) 第 J214212 号

層水旺能环保能源有限公司土壤及地下水自行监测委托检测报告

<0.09 <0.09 <0.09 <0.09 <0.09 €0.00 <0.0> 00.00 幓 所基苯 00.00 <0.09 <0.0> 00.00 <0.09 <0.09 00.00 <0.09 2-新野 >0.06 <0.06 0.00 <0.06 <0.06 00.00 00.00 <0.06 <1.2×10⁻³ <1.5×10⁻³ <1.5×10⁻³ <1.5×10⁻³ <1.5×10⁻³ <1.5×10³ <1.5×10³ 1,2-1 <1.5×10³ <1,5×10³ <1.5×10⁻³ <1.5×10³ * <1.5×10⁻³ <1.5×10³ <1.5×10⁻³ <1.5×10³ <1.5×10⁻³ <1.5×10⁻³ 1.4-二氧 階格色、重煤土 <1.1×10³ <1.2×10³ <1.2×10³ <1.2×10³ <1.1×10⁻³ <1.2×10⁻³ <1.2×10⁻³ <1.2×10⁻³ <1.2×10-3 <1.2×10⁻³ <1.2×10³ <1.2×10⁻³ <1.2×10⁻³ 氣丙烷 <1.2×10⁻³ <1.2×10⁻³ <1.2×10⁻³ <1.2×10⁻³ <1.2×10³ <1,2×10³ 中一十四 * <1.1×10³ <1.2×10³ <1.1×10⁻³ <1.2×10⁻³ <1.2×10³ <1.2×10³ <1.2×10-3 1,12,2-四 <1.2×10⁻³ 象も校 <1.1×10³ <1.1×10⁻³ <1.1×10-3 <1.1×10⁻³ 茶つ神 黄棕色,中壤土 黄棕色、中壤土 暗棕色, 童壤土 黄棕色,中壤土 黄棕色、中壤土 黄棕色、中壤土 赔偿急,重填土 性状描述 項目名称 1A02 焚烧烟气处理系统西面,最 木權区北面绿化区域(1.2m-1.7m) 1A02 焚烧烟气处理系统西面,最 水幅区北南绿化区域(3.0m-3.5m) 1B01 渗滤液处理站东侧厂区道路 IB01 孝總液处理站东側厂区道路 IA01 生活垃圾库两面厂区道路 1A01 生活垃圾库西面厂区道路 1A01 生活垃圾库局面厂区道路 水罐区北面绿化区域(0m-0.5m) IA02 焚烧烟气处理系统西面, (T J214212-211025 1#-3) (T J214212-211025 1#-1) (T J214212-211025 2#-1) (T J214212-211025 2#-2) (T J214212-211025 2#-3) (T J214212-211025 1#-2) (T J214212-211025 3#-1) (T J214212-211025 3#-2) 绿化区域(1.5m-2.0m) 绿化区域(2.5m-3.0m) 米样地点 (样品编号) 绿化区域(0m-0.5m) 参(1.3m-1.8m) 多(0m-0.5m) 维上表 中寺 02 0 03

99

00 00 00 00 00 00 00 00 00 00 00 00 00	器株の、会議十 <1.1×10 ³ <1.0×10 ³ <1.0×10 ³ /1.0×10 ³	表卷色、中壤土 <1.1×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.5×10 ⁻³ <1.5×10 ⁻³ <0.06 <0.09	等港液处理站而鐵、厂区外 維地旁(0m-0.5m) 東地旁(11214212-211025 4#-1)		40.09 40.09	A	2-#.B6	12=# 	4-1# # # # # # # # # # # # #	1,2,3,5	4.2 4 4.2 4 6.3 4	(1,1,2,2-w) **C.t.* <1,2×10 ³ <	株C体	本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本	条件地点(样品编号) 考德液处理站亦侧厂区道路 多(3.0m-3.6m) T 1214212-211025 3#-3) 等德液处理站而侧、厂区外 绿地旁(0m-0.5m) 1214212-211025 4#-1) 考施液处理站而侧、厂区外 绿地旁(2.1m-2.6m) T 1214212-211025 4#-2) 考虑液处理站而侧、厂区外 绿地旁(3.5m-4.0m) T 1214212-211025 4#-3)
黄蔡色、中壤土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06	<1.2×10³ <1.2×10³ <1.5×10³ <1.5×10³ <0.06 <0.09		奏特色、中壤土 <1.1×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.5×10 ⁻³ <1.5×10 ⁻³ <0.06	4 技術法	<0.05	<0.09	<0.06	<1.5×10³	<1.5×10³	<1.2×10³	<1,2×10³	<1.2×10³	<1.1×10³	暗棕色、東壤土	1B02 漆漆液处理站面側、厂区外 葉地旁(3.5m-4.0m) (TJ214212-211025 4#-3)
勝格色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 養格色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 静格色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×	職権色、重集土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 責務色、中集土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09	勝格色、重模土 <1.1×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.5×10 ⁻³ <1.5×10 ⁻³ <0.06 <0.09		4 長 本 2 - 第 1,2.5 - 3 4 - 5 1,4 - 3 1,4 - 3 1,4 - 3 4 本	<0.05	<0.09	90.0⊳	<1.5×10³	<1.5×10³	<1.2×10³	<1.2×10³		<1.1×10³	黄棕色、中壤土	1B02 李德液处理站而倒、厂区外 绿地旁(2.1m-2.6m) (TJ214212-2110254#-2)
素格色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09	奏称色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 奏称色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 職務色、資業土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09	奏信の、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 養格色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 職務色、重集土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09		- 仮目名称	0.09	<0.0>	<0.06	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.2×10³	<1.2×10 ³	<1.2×10 ⁻³	<1.1×10³	暗棕色、变煤土	李鴻液处理站本側厂区道路 李(3.0m-3.6m) (T.J214212-211025 3#-3)
藤春色、東様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 養格色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 職権色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 職権色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 本格色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <	藤春色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 素格色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 職権色、重様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09 素替色、中様土 <1.1×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.2×10 ³ <1.5×10 ³ <1.5×10 ³ <1.5×10 ³ <0.06 <0.09		聯格色、変媒土 <1.1×10 ⁻³ <1.2×10 ⁻³ <1.2×10 ⁻³ <1.5×10 ⁻³ <1.5×10 ⁻³ <0.06 <0.09		坤	斯泰莱	2-影動	12-1表	1. 1. **	1,2,3-三 象再成	1 苯	I,1,2,2-™ 氰乙炔	茶の茶	美国名称 性状描述	采样地成 (祥昭编号)

浙江华鲁环境科技有限公司金华分公司

100

第 19 页 共 23 页

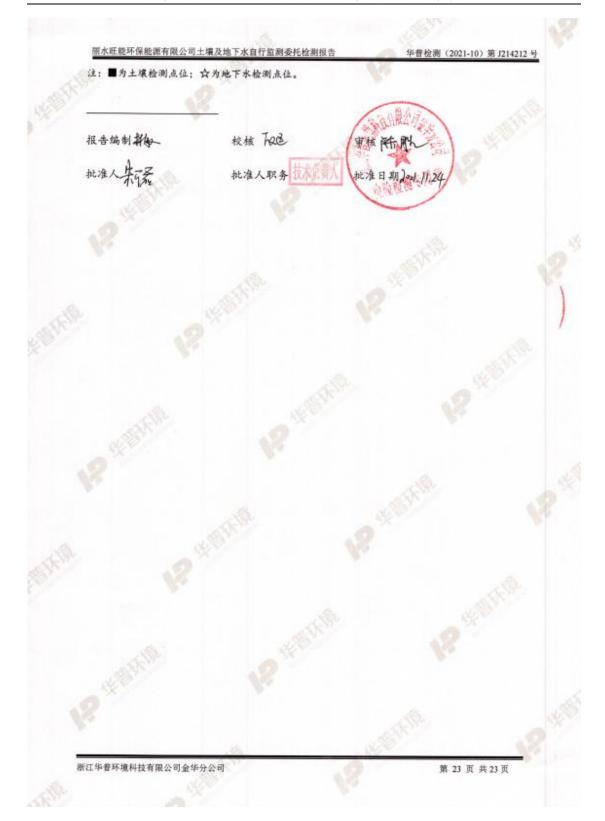
浙江华普环境科技有限公司金华分公司

华普检测 (2021-10) 第 1214212 号 1.0> 茶聚 0.1 0.1 8 0.1 0.0 8 0.0 小字字 40.5 40.5 <0.5 <0.5 0.5 0.5 1.4 0.7 二苯并 (a,h)萬 40.1 <0.1 9.1 40.1 00.1 0.1 <0.1 0.0 (1,2,3-cd) 本松 0.0 0.1 9 9.1 8 0.1 40.1 0. 苯并(a) 莊 0.1 8 00.1 9 0.1 60.1 8 80.1 苯并(k) 效蒽 0.1 0.1 0.1 <0.1 40.1 9 0.1 0.1 苯升(b) 效應 40.2 <0.7 <0.2 0.2 <0.2 40.2 <0.2 40.2 40.1 40.1 0.1 8 <0.1 0.0 概 0.1 0.1 菜井(a) 墓 0.1 0.1 9.1 9.1 0.1 <0.1 0.1 6 層水旺能环保能源有限公司土壤及地下水自行监测委托检测报告 黄棕色、中壤土 黄棕色、中壤土 暗棕色, 重壤土 暗棕色、奎壤土 黄棕色、中壤土 黄棕色、中壤土 黄棕色、中壤土 暗棕色, 变壤土 項目名称 性状指述 1A02 焚烧烟气处理系统西面,戴 1A02 焚烧烟气处理系统两面, 氨 水罐区北面绿化区塔(1.2m-1.7m) 本權区北面線化区域(3.0m-3.5m) 1402 焚烧烟气处理系统西面,氨 IB01 孝總液处理站车倒厂区道路 1801 渗滤液处理站东侧厂区道路 1A01 生活垃圾库局面厂区道路 木槿区北面绿化区域(0m-0.5m) 1401 生活垃圾库西面厂区道路 1A01 生活垃圾库西面厂区道路 (T J214212-211025 1#-3) (T J214212-211025 2#-3) (T J214212-211025 1#-1) (T J214212-211025 2#-1) (T J214212-211025 1#-2) (T J214212-211025 2#-2) (T J214212-211025 3#-1) (T J214212-211025 3#-2) 绿化区域(1.5m-2.0m) 绿化区域(2.5m-3.0m) 米林地点 (样品编号) 绿化区域(0m-0.5m) 参(1.3m-1.8m) 孝(0m-0.5m) 集上表 世中 0 02 03

丽木旺能环保能源有限公司土壤及地下水自行监测委托检测报告

华普检测 (2021-10) 第 J214212 号

明	上表		20		
序号	采样地点 (样品编号)	項目名称	石油烃 (C ₁₀ -C ₄₀)	pH 值 (无量纲)	二噁英美总 (ng TEQ/kg
	1A01 生活垃圾库西面厂区道路绿化 区域(0m-0.5m) (TJ214212-211025 1#-1)	黄棕色、中壤土	31	6.56	2.7
01	1A01 生活垃圾库西面厂区道路绿化 区域(1.5m-2.0m) (TJ214212-211025 1#-2)	黄棕色、中壤土	18	6.46	1
d	1A01 生活垃圾库西面厂区道路绿化 区域(2.5m-3.0m) (T J214212-211025 1#-3)	暗棕色、重壤土	<6	6.68	1
	1A02 焚烧烟气处理系统西面,氨水罐 区北面绿化区域(0m-0.5m) (T J214212-211025 2#-1)	黄棕色、中壤土	8	6.91	1.1
02	1A02 焚烧烟气处理系统西面, 氨水罐 区北面绿化区域(1,2m-1,7m) (T J214212-211025 2#-2)	黄棕色、中壤土	<6	6.70	1
	1A02 焚烧烟气处理系统西面,氨水罐 区北面绿化区域(3.0m-3.5m) (T J214212-211025 2#-3)	暗棕色、重壤土	<6	6.80	A.B
)3	1B01 渗滤液处理站东侧厂区道路旁 (0m-0.5m) (T J214212-211025 3#-1)	黄棕色、中壤土	7	6.95	0.48
	1B01 渗滤液处理站东侧厂区道路旁 (1.3m-1.8m) (T J214212-211025 3#-2)	暗棕色、重壤土	<6	6.97	/
	1B01 渗滤液处理站东侧厂区道路旁 (3.0m-3.6m) (T J214212-211025 3#-3)	暗棕色、重壤土	<6	6.68	1
)4	1B02 渗滤液处理站西侧、厂区外绿地 旁(0m-0.5m) (T J214212-211025 4#-1)	黄棕色、中壤土	<6	6.46	0.34
	1B02 渗滤液处理站而倒、厂区外绿地 旁(2.1m-2.6m) (T J214212-211025 4#-2)	黄棕色、中壤土	17	6.33	1
	1B02 渗滤液处理站西侧、厂区外绿地 旁(3.5m-4.0m) (T J214212-211025 4#-3)	暗棕色、重壤土	<6	6.76	S. O. P.
)5	1E01 肾景点(0m-0.5m) (TJ214212-211025 5#-1)	黄棕色、中壤土	<6	6.98	0.57
	1E01 背景点(2.0m-2.5m) (T J214212-211025 5#-2)	暗棕色、重壤土	<6	6.81	/
8	1E01 背景点(3.0m-3.5m) (T J214212-211025 5#-3)	暗棕色、重壤土	<6	6.89	/

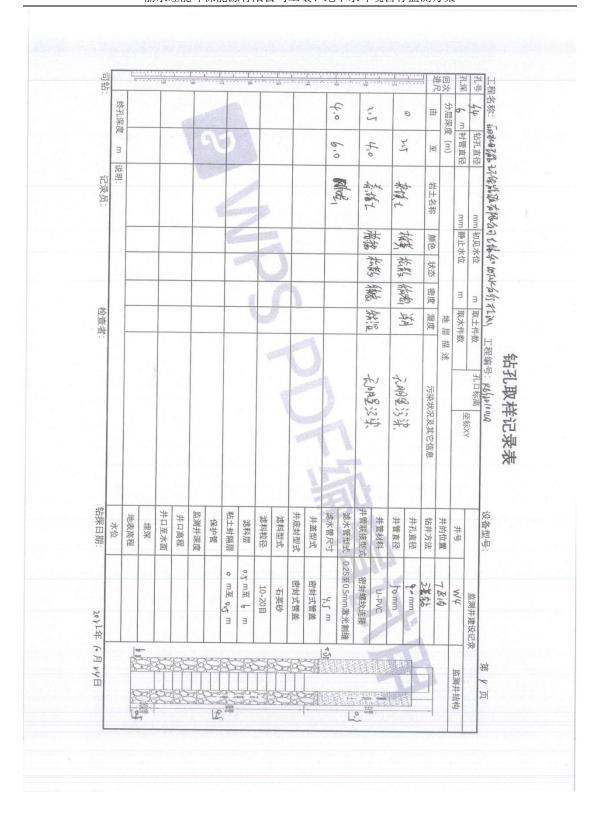

浙江华普环境科技有限公司金华分公司

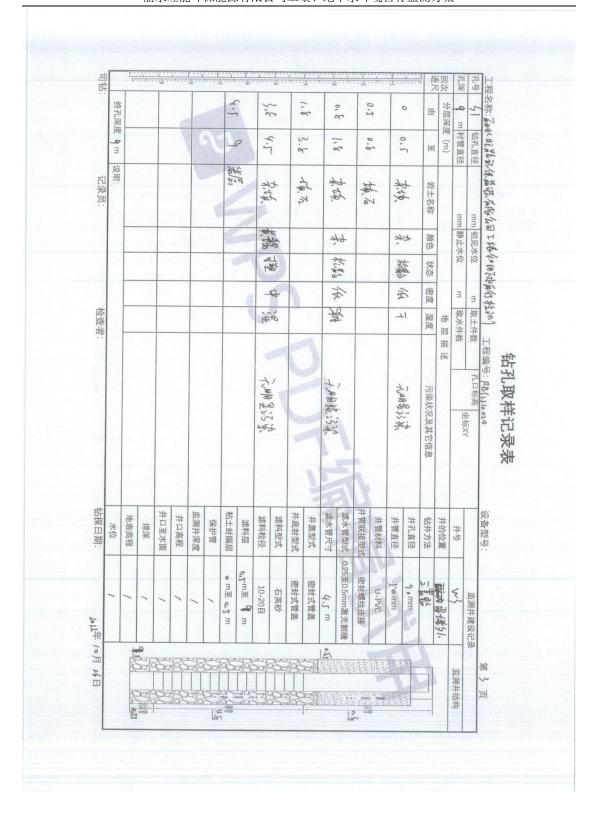
第 21 页 共 23 页

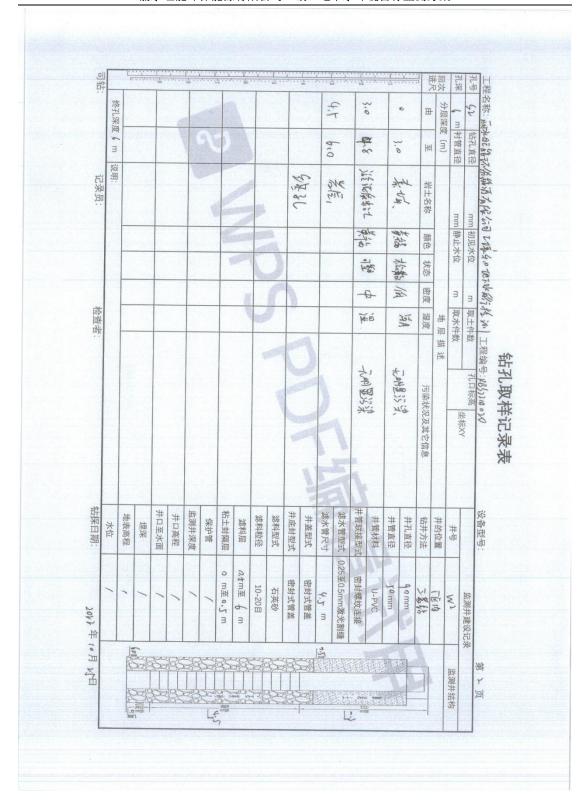
丽水旺能环保能源有限公司土壤及地下水白行监测委托检测报告 华普检测(2021-10)第 J214212 号 检测点位示意图: TE04-/2E01-

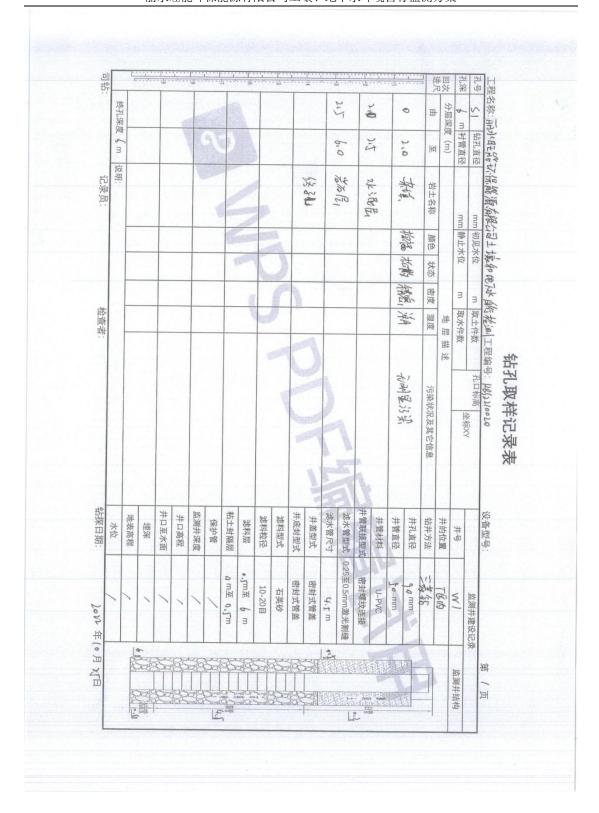
浙江华普环境科技有限公司金华分公司

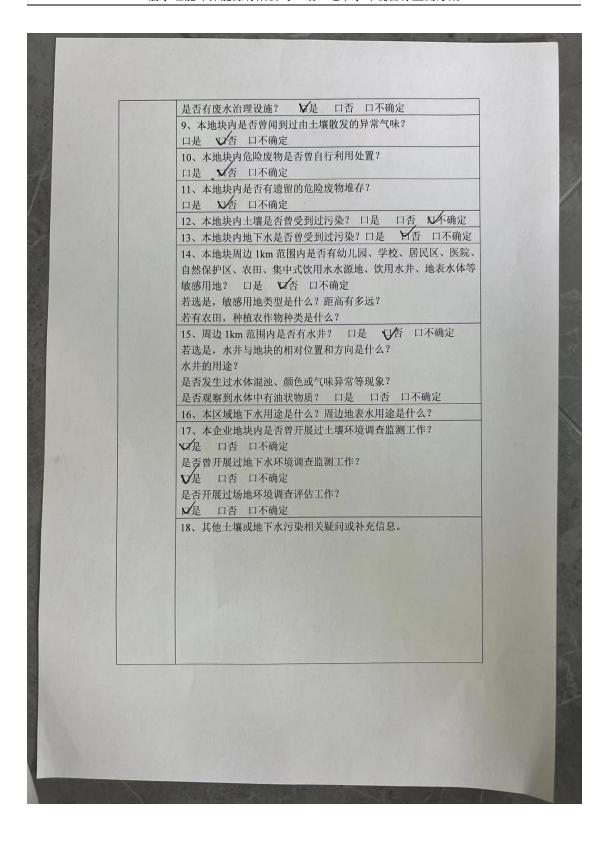

第 22 页 共 23 页




附件 3 雨污管网图




附件 4 土壤采样钻孔记录单


附件5人员访谈表

	人员访谈记录表格
地块地址	丽水旺能环保能源有限公司
访谈日期	2022年10月10日
访谈方式	□电话访谈
访谈人员	姓名: 沙加克 单位: 沙加克 教 经 化 () 有
受访人员	受访对象类型: 口土地使用者 口企业管理人员 □企业员工 口政府管理人 口环保部门管理人员 口地块周边区域工作人员 或居民 姓名: 单位: 职务: 联系电话:
访谈问题	1、本地块历史上是否有其他工业企业存在? 口是 口否 N不确定 2、本地块内是否有任何正规或非正规的工业固体废物堆放场? 工正规 口非正规 口无 口不确定 若选是,堆放场在哪? (本) 堆放什么废弃物? (本) 建放什么废弃物? (本) 3、本地块内是否有工业废水排放沟渠或渗坑? 口是 以否 口不确定 若选是,排放沟渠的材料是什么? 是否有无硬化或防渗的情况? (本) 4、本地块内是否有产品、原辅材料、油品的地下储罐或地下输送管道? (本) 是 口否 口不确定 若选是,是否发生过泄漏?口是(发生过 次) (公)
访谈问题	8、是否有工业废水产生?

	是否有废水治理设施? □ 足 口否 口不确定
	9、本地块内是否曾闻到过由土壤散发的异常气味?
	口县 7年 口不确定
	10、本地块内危险废物是否曾自行利用处置?
	口是 又否 口不确定
	11、本地块内是否有遗留的危险废物堆存?
Marie Marie	一日 一不 口不确定
	12 木地块内土壤是否曾受到过污染? 口是 口否 27个确定
	12 木州中内地下水是否曾受到过污染? 口是 1/2 口不确定
	14、本地块周边 1km 范围内是否有幼儿园、学校、居民区、医院、 自然保护区、农田、集中式饮用水水源地、饮用水井、地表水体等 敏感用地? 口是 工否 口不确定
	若选是,敏感用地类型是什么?距高有多远?
	芝 有农田 种植农作物种类是什么?
	15、周边 1km 范围内是否有水井? 口是 W否 口不确定
	若选是, 水井与地块的相对位置和方向是什么?
	水井的用途?
	是否发生过水体混浊、颜色或气味异常等现象?
	是否观察到水体中有油状物质? 口是 口否 口不确定
7 3 7 12 14	16、本区域地下水用途是什么?周边地表水用途是什么?
15/10/19/10	17、本企业地块内是否曾开展过土壤环境调查监测工作?
	口是 口否 口不确定
1055	是否曾开展过地下水环境调查监测工作?
	★ 口否 口不确定
	是否开展过场地环境调查评估工作?
	18、其他土壤或地下水污染相关疑问或补充信息。
	18、其他土壤以地下水污染相大燥的以升光白心。
State State	
10000	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

人员访谈记录表格

	八人的人
地块地址	丽水旺能环保能源有限公司
访谈日期	2022年10月10日
访谈方式	口电话仍然
访谈人员	姓名: 3大五久 单位: 50个证据1746和26678公司。 联系电话: 8157251967 受访对象类型: 口土地使用者 口企业管理人员 N企业员工
受访人员	口政府管理人 口环保部门管理人负 口地块周边区域工作人人或居民 单位: 联系电话:
访谈问题	1、本地块历史上是否有其他工业企业存在? □是 □否 \ \right\righ
访谈问题	8、是否有工业废水产生? 以是 口否 口不确定

附件 6 专家意见

丽水旺能环保能源有限公司土壤、地下水环境 自行监测方案专家咨询意见

受委托,对《丽水旺能环保能源有限公司土壤、地下水环境自行监测方案》(以下简称"方案")开展函审,经查阅相关资料,形成咨询意见如下:

一、方案总体符合国家及浙江省相关技术导则和规范的要求,内 容比较完整,方案总体可行,经修改完善后可作为下一步工作的依据。

二、建议

- 1、完善项目污染防治措施及污染事故调查等资料;细化地块历 史企业情况及相关污染分析内容,完善雨污管网图。
- 2、根据地下水流向、功能区分布等,完善一类单元设置规范性 分析,核实土壤、地下水对照点位布设,细化布点依据。
- 3、完善企业污染识别内容,核实特征污染物,逐一说明特征污染物检测指标确定的依据。
- 4、核实隐蔽性重点设施设备底部深度,进一步明确采样深度, 细化土壤样品采集和送检方式,完善全过程质控要求及附图附件。

专家签字: 7东全海

2022年10月17日

专家函审意见

报告名称	丽水旺能环保	能源有限	公司土壤、地下水自行监测方案
编制单位	浙江瑞博思检	测科技有	限公司
专家姓名	张维碟	单位	浙江省环评与监理协会

一、方案总体符合《工业企业土壤和地下水自行监测 技术指南(试行)》 (HJ1209-2021)等国家及浙江省相关技术导则和规范的要求,内容较完整,方案总体可行,经修改完善后可作为下一步工作的依据。

二、主要修改完善建议:

1.细化厂区前期监测成果,说明采样布点具体位置,土壤检测因子、分层送样信息;说明地下水埋深,核实地下水检测因子是否包括二噁英。

2.完善厂区总平布置布置调查并完善图示,细化说明柴油贮罐、事故应急池、初期雨水池、地下贮罐、料坑等涉及地下构筑物的深度。

3.根据地下构筑物深度,核实采样深度合理性;根据 HJ1209-2021 规定的 5 条原则,结合《生活垃圾焚烧污染控制标准》(GB18485-2014),校核关注污染物确定(并不仅仅为方案提及的三种特征污染物),并核实初次监测和后续监测指标;校核土壤深层点与地下水井布设,应当布设在各重点监测单元(地下构筑物)地下水流向(东北至西南)的下游方向;补充采样布点现场照片及确认表。

专家签名:

2022年10月17日

《丽水旺能环保能源有限公司土壤和地下水自行监测方案》 个人技术函审意见

2022年10月18日,浙江瑞博思检测科技有限公司按照相关规定,组织相关专家对《丽水旺能环保能源有限公司地块土壤和地下水自行监测方案》(以下简称"方案")进行技术函审,个人经认真研读,提出如下技术函审意见:

一、方案总结评价

《方案》的编制基本符合《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)等相关技术规范的要求,明确了监测点位、监测指标、质量保证与质量控制等内容。该方案经修改完善后可作为下一步工作依据。

二、修改、完善建议

- 1. 方案对厂区红线内东部区块功能未交代。如划为二类单元,则按照 HJ1209-2021 要求,应至少增设一个表层土采样点。
- 2. 补充地下水对照点 W_0 与旺能厂区的相对位置图, 并说明作为对照点的合理性 (HJ1209-2021 未提出土壤对照点的监测要求, 可不设 S_0)。
 - 3. 方案应补充现场采样安全与防护内容。
 - 4. 旺能公司厂区内曾发生过渗滤液泄漏导致地下水污染的环境事件, 方案应予说明。

叶春平

专家(签字):

2022年10月18日

附件 7 专家意见修改清单

- 1、完善项目污染防治措施及污染事故调查等资料,细化地块历史企业情况及相关污染分析内容,完善雨污管网图。(已细化地块历史企业情况,详见 24,雨污管网图详见附件 3)
- 2、根据地下水流向、功能区分布等,完善一类单元设置规范性分析,核实 土壤、地下水对照点位布设,细化布点依据。(已细化布点依据,完善一类单元 设置规范化分析)
- 3、核实隐蔽性重点设施设备底部深度,进一步明确采样深度,细化土壤样品采集和送检方式,完善全过程质控要求及附图附件(P29,已核实隐蔽性重点设施设备底部深度;已细化样品采集和送检方式)
- 4.细化厂区前期监测成果,说明采样布点具体位置,土壤检测因子、分层送样信息;说明地下水埋深,核实地下水检测因子是否包括二噁英。(P11,已补充前期采样布点具体位置,土壤检测因子、分层送样信息;已核实地下水检测因子包括二噁英)
- 5.根据地下构筑物深度,核实采样深度合理性;根据 HJ1209-2021 规定的 5 条原则,结合《生活垃圾焚烧污染控制标准》(GB18485-2014),校核关注污染物确定(并不仅仅为方案提及的三种特征污染物),并核实初次监测和后续监测指标;校核土壤深层点与地下水井布设,应当布设在各重点监测单元(地下构筑物)地下水流向(东北至西南)的下游方向;补充采样布点现场照片及确认表(已核实各地下构筑物深度,校核关注污染物。已核实各点位布设,尽量布设至地下水下游流向,已补充采样布点现场照片)
- 6.方案对厂区红线内东部区块功能未交代。如划为二类单元,则按照 J1209-2021 要求,应至少增设一个表层土采样点。(根据 P26 厂区平面图,东 部地区主要为人员活动的办公区域,对地块无太大污染)
- 7.补充地下水对照点 W0 与旺能厂区的相对位置图,并说明作为对照点的合理性(HJ1209-2021 未提出土壤对照点的监测要求,可不设 S0)。 (P41 已补充对照点监测相对位置图; P39 已补充对照点布设原因)
 - 8.方案应补充现场采样安全与防护内容。 (P58 已补充现场采样安全要求)

9.旺能公司厂区内曾发生过渗滤液泄漏导致地下水污染的环境事件,方案应 予说明。(经业主核实,仅发生过因市政管网破裂导致化粪池处理生活污水泄漏, 未曾发生过渗滤液泄漏导致地下水污染等类似的环境事件)

附件 8 2022 年土壤和地下水检测结果

检测报告

TEST REPORT

报告编号 RBS2210020 REPORTNO. 项目名称 丽水旺能环保能源有限公司土壤和地下水

自行检测

NAME OF SAMPLE

委托单位 丽水旺能环保能源有限公司

CUSTOMER

报告编制日期 2022年11月4日

REPORTDATE

浙江瑞博思检测和技有限公司

Zhejiang Ruibosi Testing Technology Co., Ltd.

共15页第1页

检测信息

委托单位 地址 雨水市莲都区南明山街道潘田村 样品类别 地下水、土地 采样单位 浙江瑞博思检测科技有限公司 采样日期 2022.10.24~10 采样地点 雨水市莲都区南明山街道潘田村 分析地点 杭州西湖区青蓝科创园 D 座 2 号楼东侧 5 楼实验室 分析日期 2022.10.26~11 P号 仪器型号 仪器编号 1 PHB-5 便携式 pH 计 876 A20 2 TL2300EPA 浊度计 A20 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 A67 5 DK-826 电热恒温水浴锅 A67 A68 7 JA1003 电子天平 A64 A68 8 XSP-16A 生物显微镜 A63 A74 10 JC-WD-12 氮吹仪 A54 A54 11 DK-98-II 电炉 (两联) A35 A35						
委托单位 地址 雨水市莲都区南明山街道潘田村 样品类别 地下水、土地 采样单位 浙江瑞博思检测科技有限公司 采样日期 2022.10.24~10 采样地点 雨水市莲都区南明山街道潘田村 分析地点 杭州西湖区青蓝科创园 D 座 2 号楼东侧 5 楼实验室 分析日期 2022.10.26~11 P号 仪器型号 仪器编号 1 PHB-5 便携式 pH 计 876 A20 2 TL2300EPA 浊度计 A20 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 A67 5 DK-826 电热恒温水浴锅 A67 A68 7 JA1003 电子天平 A64 A68 8 XSP-16A 生物显微镜 A63 A74 10 JC-WD-12 氮吹仪 A54 A54 11 DK-98-II 电炉 (两联) A35 A35	项目名称	丽水旺		检测类别	委托检测	
地址	委托单位		丽水旺能环保能源有限公司	委托日期	2022.10.19	
采样地点 丽水市莲都区南明山街道潘田村 分析地点 序号 仪器型号 分析日期 2022.10.26~11 序号 仪器型号 仪器型号 仪器编号 1 PHB-5 便携式 pH 计 B76 2 TL2300EPA 浊度计 A20 3 V2200 可见分光光度计 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 5 DK-S26 电热恒温水浴锅 A67 8 XSP-16A 生物显微镜 A64 8 XSP-16A 生物显微镜 A64 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		ĦĦ	水市莲都区南明山街道潘田村	样品类别	地下水、土壤	
分析地点 杭州西湖区青蓝科创园 D 座 2 号楼东侧 5 楼实验室 分析日期 2022.10.26~11 序号 仪器型号 仪器编号 1 PHB-5 便携式 pH 计 B76 2 TL2300EPA 浊度计 A20 3 V2200 可见分光光度计 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35	采样单位	ž	折江瑞博思检测科技有限公司	采样日期	2022.10.24~10.26	
分析坦点 5 楼实验室 分析日期 2022.10.26~11 序号 仪器型号 仪器编号 1 PHB-5 便携式 pH 计 B76 2 TL2300EPA 浊度计 A20 3 V2200 可见分光光度计 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉(两联) A35	采样地点		丽水市莲都区南明山街	 丁道潘田村		
1 PHB-5 便携式 pH 计 B76 2 TL2300EPA 浊度计 A20 3 V2200 可见分光光度计 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉(两联) A35	分析地点	杭州西		分析日期	2022.10.26~11.04	
2 TL2300EPA 浊度计 A20 3 V2200可见分光光度计 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 检测仪器 及编号 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 南落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉(两联) A35		序号	仪器型号	仪器编号		
3 V2200 可见分光光度计 A34 4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 检测仪器及编号 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉(两联) A35		1	PHB-5 便携式 pH 计	B76		
4 LS-35LD 立式压力蒸汽灭菌器 A100 5 DK-S26 电热恒温水浴锅 A67 检测仪器及编号 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉(两联) A35		2	TL2300EPA 浊度计	A20		
5 DK-S26 电热恒温水浴锅 A67 检测仪器 及编号 6 DNP-9052 电热恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		3	V2200 可见分光光度计	A34		
检測仪器 及編号 6 DNP-9052 电熱恒温培养箱 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		4	LS-35LD 立式压力蒸汽灭菌器	A100		
及编号 6 DNP-9052 电热恒温培养相 A68 7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		5	DK-S26 电热恒温水浴锅	A67		
7 JA1003 电子天平 A64 8 XSP-16A 生物显微镜 A63 9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		6	DNP-9052 电热恒温培养箱	A68		
9 XK-97A 菌落计数器 A74 10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		7	JA1003 电子天平	A64		
10 JC-WD-12 氮吹仪 A54 11 DK-98-II 电炉 (两联) A35		8	XSP-16A 生物显微镜	A63		
11 DK-98-II 电炉 (两联) A35		9	XK-97A 菌落计数器	A74		
		10	JC-WD-12 氮吹仪	A54		
12 VDI HP06 会自动萎缩仪 400		11	DK-98-II 电炉 (两联)		A35	
12 100-11100 主音吻然相区		12	YDL-HP06 全自动蒸馏仪		A99	

	13	mp5002 电子天平	A31
	14	SD46-1 智能电热板	A108
	15	MetrohmECO-IC 离子色谱仪	A03
1	16	7800 等离子体质谱仪(ICP-MS)	A97
	17	8860, 5977B 气相色谱和质谱联用仪	A76、A94
	18	PTC-III 吹扫捕集仪	A77
	19	SJIA-12N-60A 真空冷冻干燥机	A96
	20	RE-52AA 旋转蒸发仪	A53
	21	GL-3250B 磁力搅拌器	A12
	22	AA6880 原子吸收光谱仪	A15、A49
	23	PXSJ-216F 型 离子计	A82
检测仪器	24	KQ3200DE 超声波清洗器	A11
及编号	25	TD6M 离心机	A48
	26	PHSJ-3F pH 计	A104
	27	GZX9140MBE 电热鼓风干燥箱	A17
	28	ME204E 电子天平	A57
	29	7890B 气相色谱仪	A04
	30	752 紫外可见分光光度计	A92
	31	HHS-6 数显恒温水浴锅	A103
	32	HPFE 06 高通量加压流体萃取仪	A90
	33	AFS-8520 原子荧光光谱仪	A05
	34	YMW-HP 微波消解仪	A107
	35	DSX-18L 手提式高压蒸汽灭菌器	A71
	36	5110 电感耦合等离子体光谱仪 (ICP)	A02

共15页第3页

一、检测方法依据:见表1。

表 1 检测方法

		衣 1 恒侧方法
序号	项目	检测依据及标准号
1	pH 值	水质 pH值的测定 玻璃电极法 HJ 1147-2020
2	色度	生活饮用水标准检验方法感官性状和物理指标 GB/T 5750.4-2006
3	臭和味	生活饮用水标准检验方法感官性状和物理指标 GB/T 5750.4-2006
4	浑浊度	生活饮用水标准检验方法感官性状和物理指标 GB/T 5750.4-2006
5	肉眼可见物	生活饮用水标准检验方法感官性状和物理指标 GB/T 5750.4-2006
6	总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-1987
7	溶解性总固体	生活饮用水标准检验方法感官性状和物理指标 GB/T 5750.4-2006
8	氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009
9	硝酸盐(以N 计)、硫酸盐、氯 化物、氟化物	水质 无机阴离子 (F·、Cl·、NO ₂ ·、Br、NO ₃ ·、PO ₄ ³ ·、SO ₃ ² ·、SO ₄ ² ·) 的测定 离子色谱法 HJ 84-2016
10	亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987
11	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987
12	砷、汞、硒、锑	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014
13	铁、锰、铜、锌、铝、镉、铅、铬、铍、钴、铊、镍	水质 65种元素的测定 电感耦合等离子体质谱法 HJ 700-2014
14	钠	水质 32种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015
15	挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 503-2009
16	氰化物	水质 氰化物的测定 容量法和分光光度法 HJ 484-2009
17	苯、甲苯、三氯 甲烷、四氯化碳	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012

共15页第4页

接上表:

序号	项目	检测依据及标准号
18	阴离子表面 活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 7494-1987
19	总磷	水质 总磷的测定 钼酸铵分光光度法 GB/T 11893-1989
20	总大肠菌群	生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006
21	菌落总数	生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006
22	耗氧量	生活饮用水标准检验方法 有机物综合指标 GB/T 5750.7-2006
23	硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021
24	pH 值	土壤 pH 值的测定 电位法 HJ 962-2018
25	汞、砷、锑	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解-原子荧光法 HJ 680-2013
26	镉、铜、镍、铅、 钴、锰	土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016
27	铊	土壤和沉积物 铊的测定 石墨炉原子吸收分光光度法 HJ 1080-2019
28	六价铬	土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法 HJ 1082-2019
29	挥发性有机物	土壤和沉积物 挥发性有机物的的测定 吹扫捕集气相色谱-质谱法 HJ 605-2011
30	半挥发性有机物	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 834-2017
31	苯胺(半挥发性 有机物)	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附录K
32	石油烃	土壤和沉积物 石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法 HJ 1021-2019
33	水溶性氟化物	土壤 水溶性氟化物和总氟化物的测定 离子选择电极法 HJ 873-2017

共15页 第5页

二、地下水检测结果:见表 2。

表 2 地下水检测结果

检测点位	W1	W2	W3	W4	W0	
采样日期	10.26	10.26	10.26	10.26	10.26	
采样时间	16:10	15:48	15:15	15:29	16:25	标准
样品编号	RBS2210020- 1026-S-1-1	RBS2210020- 1026-S-2-1	RBS2210020- 1026-S-3-1	RBS2210020- 1026-S-4-1	RBS2210020- 1026-S-5-1	限值
样品性状	无色透明	无色透明	无色透明	无色透明	无色透明	
pH 值 (无量纲)	8.0	7.9	8.1	8.0	8.2	5.5~9.0
色度(度)	5	5	5	5	5	25
臭和味 (无单位)	无	无	无	无	无	无
浑浊度(NTU)	8.9	5.2	8.9	8.1	9.5	10
肉眼可见物 (无单位)	无	无	无	无	无	无
总硬度(mg/L)	92.4	140	55.9	50.5	92.2	650
溶解性总固体 (mg/L)	142		77	177	121	2000
硫酸盐(mg/L)	1.62	4.58	4.54	9.70	1.32	350
氯化物(mg/L)	8.90	43.9	43.9	81.3	6.95	350
铜 (mg/L)	1.61×10 ⁻³	1.43×10 ⁻³	2.65×10 ⁻³	1.72×10 ⁻³	7.74×10 ⁻⁴	1.50
铁 (mg/L)	6.38×10 ⁻³	2.32×10 ⁻³	3.42×10 ⁻³	1.19×10 ⁻²	7.73×10 ⁻³	2.0
锰 (mg/L)	0.120	0.559	0.342	8.93×10 ⁻²	4.81×10 ⁻²	1.50
锌 (mg/L)	4.78×10 ⁻³	7.26×10 ⁻³	8.83×10 ⁻³	4.19×10 ⁻³	2.05×10 ⁻³	5.00
铝 (mg/L)	4.34×10 ⁻²	1.79×10 ⁻²	1.71×10 ⁻²	5.31×10 ⁻²	7.02×10 ⁻²	0.50
钠 (mg/L)	9.20	15.6	13.8	31.2	5.02	400
镉 (mg/L)	1.28×10 ⁻⁴	3.63×10 ⁻⁴	4.30×10 ⁻⁴	1.85×10 ⁻⁴	1.18×10 ⁻⁴	0.01
铅 (mg/L)	3.89×10 ⁻⁴	1.64×10 ⁻⁴	1.74×10 ⁻⁴	2.56×10 ⁻⁴	1.91×10 ⁻⁴	0.10
挥发酚(mg/L)	<0.0003	<0.0003	<0.0003	0.0014	0.0015	0.01
阴离子表面 活性剂(mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	0.3
备注	标准限值参照	《地下水质量	标准》(GB/T 1	4848-2017) 中	的类标准IV类	

共15页第6页

上表:

检测点位	W1	W2	W3	W4	*****	
					W0	
采样日期	10.26	10.26	10.26	10.26	10.26	
采样时间	16:10	15:48	15:15	15:29	16:25	标准
样品编号	RBS2210020-	RBS2210020-	RBS2210020-	RBS2210020-	RBS2210020-	限值
DA EL PITAN	1026-S-1-1	1026-S-2-1	1026-S-3-1	1026-S-4-1	1026-S-5-1	
样品性状	无色透明	无色透明	无色透明	无色透明	无色透明	
耗氧量(mg/L)	4.2	5.4	4.1	4.3	4.3	10.0
氨氮(mg/L)	0.938	0.060	0.106	0.150	0.122	1.50
硫化物 (mg/L)	<0.003	< 0.003	<0.003	<0.003	< 0.003	0.10
亚硝酸盐氮(mg/L)	0.029	0.024	0.036	0.045	0.048	4.80
硝酸盐(以N计) (mg/L)	6.76	0.413	0.394	1.09	0.497	30.0
氰化物 (mg/L)	<0.004	< 0.004	<0.004	< 0.004	< 0.004	0.1
氟化物 (mg/L)	0.808	0.554	0.690	0.488	0.158	2.0
汞 (mg/L)	<4.00×10 ⁻⁵	0.002				
砷 (mg/L)	<3.00×10 ⁻⁴	0.05				
硒 (mg/L)	<4.00×10 ⁻⁴	0.1				
六价铬 (mg/L)	<0.004	< 0.004	<0.004	<0.004	< 0.004	0.10
三氯甲烷 (μg/L)	<1.4	<1.4	21.1	24.2	24.7	300
四氯化碳(μg/L)	<1.5	<1.5	<1.5	<1.5	<1.5	50.0
苯 (μg/L)	<1.4	<1.4	<1.4	<1.4	<1.4	120
甲苯 (μg/L)	<1.4	<1.4	20.0	19.4	18.7	1400
总磷 (mg/L)	0.082	0.014	0.100	0.121	0.116	/
铬 (mg/L)	<1.10×10 ⁻⁴	<1.10×10 ⁻⁴	2.00×10 ⁻⁴	1.10×10 ⁻⁴	<1.10×10 ⁻⁴	1
铍 (mg/L)	<4.00×10 ⁻⁵	4.60×10 ⁻⁵	3.39×10 ⁻³	2.63×10 ⁻⁴	5.20×10 ⁻⁵	0.06
锑 (mg/L)	<2.00×10 ⁻⁴	0.01				
钴 (mg/L)	2.88×10 ⁻⁴	5.37×10 ⁻⁴	4.32×10 ⁻⁴	1.64×10 ⁻⁴	6.50×10 ⁻⁵	0.10
铊 (mg/L)	1.14×10 ⁻⁴	7.60×10 ⁻⁵	1.12×10 ⁻³	1.65×10 ⁻⁴	5.80×10 ⁻⁵	0.001
镍 (mg/L)	5.42×10 ⁻⁴	1.08×10 ⁻³	4.74×10 ⁻³	1.73×10 ⁻²	1.80×10 ⁻²	1
总大肠菌群 (CFU/100mL)	8	32	54	17	25	100
菌落总数 (CFU/mL)	3.0×10 ²	3.6×10 ²	8.9×10 ²	4.0×10 ²	3.3×10 ²	1000
备注	L= >0.00 HE /- 45 H	g	量标准》(GB/7		1 44 34 1-30-4	- 14

共15页 第7页

三、土壤检测结果: 见表 3。

表 3 土壤检测结果

检测点位		S1			S2		
采样深度(m)	0~0.5	1.0~1.5	1.5~2.0	0~0.5	1.5~2.0	4.0~4.8	
采样日期	10.25	10.25	10.25	10.25	10.25	10.25	
采样时间	17:20	17:20	17:20	15:10	15:10	15:10	标准
样品编号	RBS2210020 -1025-T-6-1	RBS2210020 -1025-T-6-2	RBS2210020 -1025-T-6-3	RBS2210020 -1025-T-7-1	RBS2210020 -1025-T-7-2	RBS2210020 -1025-T-7-3	限值
样品性状	棕褐色素 填土	棕褐色素 填土	棕褐色素 填土	黄褐色素 填土	黄褐色素 填土	黄褐色淤泥质粘土	
pH 值 (无量纲)	7.55	7.50	7.40	7.43	7.30	7.20	1
砷 (mg/kg)	4.61	4.03	5.29	3.92	5.44	2.41	- 60
镉 (mg/kg)	0.62	0.55	0.26	0.40	1.38	0.32	65
六价铬 (mg/kg)	<0.5	<0.5	<0.5	0.8	0.7	0.8	5.7
铜 (mg/kg)	29.8	19.7	18.5	13.8	30.5	17.6	18000
铅 (mg/kg)	49	50	34	43	74	35	800
汞 (mg/kg)	0.444	0.230	0.159	0.143	0.154	0.181	38
镍 (mg/kg)	18	13	18	8	18	16	900
锑 (mg/kg)	0.174	<1.00×10 ⁻²	<1.00×10 ⁻²	<1.00×10 ⁻²	0.579	<1.00×10 ⁻²	180
钴 (mg/kg)	11.9	9.37	12.9	6.58	12.7	8.93	70
铊 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
锰 (mg/kg)	627	733	674	809	1.03×10 ³	281	1
四氯化碳 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	2.8
氯仿 (mg/kg)	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	0.9
氯甲烷 (mg/kg)	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	37
二氯甲烷 (mg/kg)	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	616
1,1-二氯乙烷 (mg/kg)	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	9
(mg/kg) 备注	标准限值执行	<1.2×10 ⁻³ 行《土壤环境 018)中的第二	质量 建设用	地土壤污染风	险管控标准(i		9

共15页 第8页

Take	上表:
730	

检测点位		S1			S2		
采样深度(m)	0~0.5	1.0~1.5	1.5~2.0	0~0.5	1.5~2.0	4.0~4.8	
采样日期	10.25	10.25	10.25	10.25	10.25	10.25	50.2
采样时间	17:20	17:20	17:20	15:10	15:10	15:10	标准
样品编号	RBS2210020	RBS2210020	RBS2210020	RBS2210020	RBS2210020	RBS2210020	限值
件前狮亏	-1025-T-6-1	-1025-T-6-2	-1025-T-6-3	-1025-T-7-1	-1025-T-7-2	-1025-T-7-3	
样品性状	棕褐色素 填土	棕褐色素 填土	棕褐色素 填土	黄褐色素 填土	黄褐色素 填土	黄褐色淤泥质粘土	
1,2-二氯乙烷 (mg/kg)	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10-3	<1.3×10-3	<1.3×10 ⁻³	5
1,1-二氯乙烯 (mg/kg)	<1.0×10 ⁻³	66					
顺式-1,2-二氯 乙烯 (mg/kg)	<1.3×10 ⁻³	596					
反式-1,2-二氯 乙烯(mg/kg)	<1.4×10 ⁻³	54					
1,1,1,2-四氯乙 烷 (mg/kg)	<1.2×10 ⁻³	10					
1,1,2,2-四氯乙 烷 (mg/kg)	<1.2×10 ⁻³	6.8					
1,2-二氯丙烷 (mg/kg)	<1.1×10 ⁻³	5					
四氯乙烯 (mg/kg)	<1.4×10 ⁻³	53					
1,1,1-三氯乙 烷(mg/kg)	<1.3×10 ⁻³	840					
1,1,2-三氯乙 烷 (mg/kg)	<1.2×10 ⁻³	2.8					
三氯乙烯 (mg/kg)	<1.2×10 ⁻³	2.8					
1,2,3-三氯丙 烷(mg/kg)	<1.2×10 ⁻³	0.5					
氯乙烯 (mg/kg)	<1.0×10 ⁻³	0.43					
苯 (mg/kg)	<1.9×10 ⁻³	4					
甲苯 (mg/kg)	<1.3×10 ⁻³	1200					
乙苯 (mg/kg)	<1.2×10 ⁻³	28					
间,对-二甲苯 (mg/kg)	<1.2×10 ⁻³	570					
邻-二甲苯 (mg/kg)	<1.2×10 ⁻³	640					

共15页 第9页

1-3-	1 -1-
THE	上表:
134-	1100

检测点位		S1			S2		
采样深度(m)	0~0.5	1.0~1.5	1.5~2.0	0~0.5	1.5~2.0	4.0~4.8	
采样日期	10.25	10.25	10.25	10.25	10.25	10.25	
采样时间	17:20	17:20	17:20	15:10	15:10	15:10	标准
样品编号	RBS2210020 -1025-T-6-1	RBS2210020 -1025-T-6-2	RBS2210020 -1025-T-6-3	RBS2210020 -1025-T-7-1	RBS2210020 -1025-T-7-2	RBS2210020 -1025-T-7-3	限值
样品性状	棕褐色素 填土	棕褐色素 填土	棕褐色素 填土	黄褐色素填土	黄褐色素填土	黄褐色淤泥质粘土	
苯乙烯 (mg/kg)	<1.1×10 ⁻³	1290					
氯苯 (mg/kg)	<1.2×10 ⁻³	270					
1,2-二氯苯 (mg/kg)	<1.5×10 ⁻³	560					
1,4-二氯苯 (mg/kg)	<1.5×10 ⁻³	20					
硝基苯 (mg/kg)	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	76
苯胺 (mg/kg)	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	260
2-氯苯酚 (mg/kg)	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	2256
萘(mg/kg)	< 0.09	<0.09	<0.09	<0.09	< 0.09	< 0.09	70
苯并[a]蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	15
苯并[b]荧蒽 (mg/kg)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	15
苯并[k]荧蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	151
苯并[a]芘 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5
二苯并[ah]蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5
茚并[1,2,3-cd] 芘(mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	15
蕰(mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1293
石油烃 (C ₁₀ ~C ₄₀) (mg/kg)	78	82	49	41	69	54	4500
水溶性氟化物 (mg/kg)	16.6	17.9	13.1	12.8	13.7	16.3	1
备注			质量 建设用地的风险筛选		险管控标准(证	式行)》(GB	

共15页 第10页

上表:

检测点位		S3			S4		
采样深度(m)	0~0.5	1.0~1.5	5.0~5.6	0~0.5	2.5~3.0	3.0~4.0	
采样日期	10.26	10.26	10.26	10.24	10.24	10.24	
采样时间	11:10	11:10	11:10	16:36	16:36	16:36	标准
样品编号	RBS2210020 -1026-T-8-1	RBS2210020 -1026-T-8-2	RBS2210020 -1026-T-8-3	RBS2210020 -1024-T-9-1	RBS2210020 -1024-T-9-2	RBS2210020 -1024-T-9-3	限值
样品性状	杂色 杂填土	杂色 杂填土	黄褐色 杂填土	棕黄色 杂填土	黄褐色素 填土	棕褐色素 填土	
pH 值 (无量纲)	7.40	7.25	7.11	7.30	7.25	7.10	/
砷 (mg/kg)	3.88	6.55	1.25	6.11	4.57	2.49	60
镉 (mg/kg)	0.60	0.40	0.47	0.28	0.11	0.21	65
六价铬 (mg/kg)	1.3	0.8	1.2	1.4	1.6	1.4	5.7
铜 (mg/kg)	25.8	23.6	19.4	13.8	13.0	14.2	18000
铅 (mg/kg)	41	38	27	39	20	23	800
汞 (mg/kg)	0.104	0.120	0.100	7.86×10 ⁻²	7.72×10 ⁻²	7.03×10 ⁻²	38
镍 (mg/kg)	18	21	29	13	15	19	900
锑 (mg/kg)	0.483	0.104	<1.00×10 ⁻²	<1.00×10 ⁻²	1.62	1.51	180
钴 (mg/kg)	10.4	20.2	13.6	8.35	9.09	11.3	70
铊 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	/
锰 (mg/kg)	704	758	1.39×10 ³	715	575	657	/
四氯化碳 (mg/kg)	<1.3×10 ⁻³	2.8					
氯仿 (mg/kg)	<1.1×10 ⁻³	0.9					
氯甲烷 (mg/kg)	<1.0×10 ⁻³	37					
二氯甲烷 (mg/kg)	<1.5×10 ⁻³	616					
1,1-二氯乙烷 (mg/kg)	<1.2×10 ⁻³	9					
备注				也土壤污染风 2筛选值要求。		式行)》	N = 10

共15页第11页

接上表:

检测点位		S3			S4		
采样深度(m)	0~0.5	1.0~1.5	5.0~5.6	0~0.5	2.5~3.0	3.0~4.0	
采样日期	10.26	10.26	10.26	10.24	10.24	10.24	
采样时间	11:10	11:10	11:10	16:36	16:36	16:36	标准
样品编号	RBS2210020	RBS2210020	RBS2210020	RBS2210020	RBS2210020	RBS2210020	限值
1年前9冊号	-1026-T-8-1	-1026-T-8-2	-1026-T-8-3	-1024-T-9-1	-1024-T-9-2	-1024-T-9-3	
样品性状	杂色	杂色	黄褐色	棕黄色	黄褐色素	棕褐色素	
	杂填土	杂填土	杂填土	杂填土	填土	填土	
1,2-二氯乙烷 (mg/kg)	<1.3×10 ⁻³	5					
1,1-二氯乙烯 (mg/kg)	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10-3	<1.0×10 ⁻³	<1.0×10 ⁻³	66
顺式-1,2-二氯 乙烯 (mg/kg)	<1.3×10 ⁻³	596					
反式-1,2-二氯 乙烯 (mg/kg)	<1.4×10 ⁻³	54					
1,1,1,2-四氯乙 烷 (mg/kg)	<1.2×10 ⁻³	10					
1,1,2,2-四氯乙 烷 (mg/kg)	<1.2×10 ⁻³	6.8					
1,2-二氯丙烷 (mg/kg)	<1.1×10 ⁻³	5					
四氯乙烯 (mg/kg)	<1.4×10 ⁻³	53					
1,1,1-三氯乙 烷 (mg/kg)	<1.3×10 ⁻³	840					
1,1,2-三氯乙 烷 (mg/kg)	<1.2×10 ⁻³	2.8					
三氯乙烯 (mg/kg)	<1.2×10 ⁻³	2.8					
1,2,3-三氯丙 烷 (mg/kg)	<1.2×10 ⁻³	0.5					
氯乙烯 (mg/kg)	<1.0×10 ⁻³	0.43					
苯(mg/kg)	<1.9×10 ⁻³	4					
甲苯 (mg/kg)	<1.3×10 ⁻³	1200					
乙苯 (mg/kg)	<1.2×10 ⁻³	28					
间,对-二甲苯 (mg/kg)	<1.2×10 ⁻³	570					
邻-二甲苯 (mg/kg)	<1.2×10 ⁻³	640					

共15页 第12页

-	The second second
-take	上表:

检测点位		S3			S4		
采样深度(m)	0~0.5	1.0~1.5	5.0~5.6	0~0.5	2.5~3.0	3.0~4.0	
采样日期	10.26	10.26	10.26	10.24	10.24	10.24	
采样时间	11:10	11:10	11:10	16:36	16:36	16:36	标准
样品编号	RBS2210020 -1026-T-8-1	RBS2210020 -1026-T-8-2	RBS2210020 -1026-T-8-3	RBS2210020 -1024-T-9-1	RBS2210020 -1024-T-9-2	RBS2210020 -1024-T-9-3	限值
样品性状	杂色 杂填土	杂色 杂填土	黄褐色 杂填土	棕黄色 杂填土	黄褐色素填土	棕褐色素 填土	
苯乙烯 (mg/kg)	<1.1×10 ⁻³	1290					
氯苯 (mg/kg)	<1.2×10 ⁻³	270					
1,2-二氯苯 (mg/kg)	<1.5×10 ⁻³	560					
1,4-二氯苯 (mg/kg)	<1.5×10 ⁻³	20					
硝基苯 (mg/kg)	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	76
苯胺 (mg/kg)	< 0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	260
2-氯苯酚 (mg/kg)	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	2256
萘 (mg/kg)	< 0.09	<0.09	<0.09	<0.09	<0.09	<0.09	70
苯并[a]蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	15
苯并[b]荧蒽 (mg/kg)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	15
苯并[k]荧蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	151
苯并[a]芘 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5
二苯并[ah]蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5
茚并[1,2,3-cd] 芘(mg/kg)	<0.1	<0.1	<0.1.	<0.1	<0.1	<0.1	15
䓛(mg/kg)	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	1293
石油烃 (C ₁₀ ~C ₄₀) (mg/kg)	43	43	84	56	29	60	4500
水溶性氟化物 (mg/kg)	8.0	9.9	9.0	10.6	4.2	5.4	1
备注		了《土壤环境》 中的第二类用	质量 建设用地的风险筛选		险管控标准(i	式行)》(GB	

共15页 第13页

	上表:

S0	B1	B2	В3	B4	1
0~0.5	0~0.5	0~0.5	0~0.5	0~0.5	
10.25	10.26	10.26	10.26	10.26	L vp-
11:20	09:34	09:49	10:03	09:57	标准限值
RBS2210020 -1025-T-10-1	RBS2210020 -1026-T-11-1	RBS2210020 -1026-T-12-1	RBS2210020 -1026-T-13-1	RBS2210020 -1026-T-14-1	PKIL
黄褐色壤土	黄褐色壤土	黄褐色壤土	黄褐色壤土	棕黄色壤土	
7.36	7.40	7.33	7.35	7.30	/
2.84	3.53	6.31	6.91	6.63	60
0.14	0.36	0.22	0.18	0.14	65
1.6	0.5	<0.5	<0.5	0.6	5.7
13.3	13.6	10.2	13.1	11.5	18000
30	44	44	50	49	800
0.120	0.146	8.66×10 ⁻²	8.77×10 ⁻²	8.77×10 ⁻²	38
12	7	10	13	11	900
1.60	1.73	1.32	1.81	1.43	180
10.5	6.03	6.11	7.33	6.63	70
<0.1	<0.1	<0.1	<0.1	<0.1	1
200	715	437	543	552	1
<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	<1.3×10 ⁻³	2.8
<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	0.9
<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	<1.0×10 ⁻³	37
<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	<1.5×10 ⁻³	2.7×10 ⁻³	616
<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	<1.2×10 ⁻³	9
	10.25 11:20 RBS2210020 -1025-T-10-1 黄褐色壤土 7.36 2.84 0.14 1.6 13.3 30 0.120 12 1.60 10.5 <0.1 200 <1.3×10·3 <1.1×10·3 <1.0×10·3 <1.5×10·3 <1.2×10·3	10.25 10.26 11:20 09:34 RBS2210020 RBS2210020 -1025-T-10-1 -1026-T-11-1 黄褐色壤土 黄褐色壤土 7.36 7.40 2.84 3.53 0.14 0.36 1.6 0.5 13.3 13.6 30 44 0.120 0.146 12 7 1.60 1.73 10.5 6.03 <0.1 <0.1 200 715 <1.3×10·3 <1.3×10·3 <1.1×10·3 <1.1×10·3 <1.0×10·3 <1.5×10·3 <1.5×10·3 <1.5×10·3 <1.2×10·3 <1.2×10·3	10.25 10.26 10.26 11:20 09:34 09:49 RBS2210020 RBS2210020 RBS2210020 -1025-T-10-1 -1026-T-11-1 -1026-T-12-1 黄褐色壤土 黄褐色壤土 黄褐色壤土 7.36 7.40 7.33 2.84 3.53 6.31 0.14 0.36 0.22 1.6 0.5 <0.5 13.3 13.6 10.2 30 44 44 0.120 0.146 8.66×10²² 12 7 10 1.60 1.73 1.32 10.5 6.03 6.11 <0.1 <0.1 <0.1 200 715 437 <1.3×10³3 <1.3×10³3 <1.3×10³3 <1.1×10³3 <1.1×10³3 <1.1×10³3 <1.5×10³3 <1.5×10³3 <1.5×10³3 <1.5×10³3 <1.5×10³3 <1.5×10³3 <1.2×10³3 <1.2×10³3 <1.2×10³3	10.25	10.25 10.26 10.26 10.26 10.26 10.26 11:20 09:34 09:49 10:03 09:57 RBS2210020 RBS2210020 RBS2210020 RBS2210020 -1025-T-10-1 -1026-T-11-1 -1026-T-12-1 -1026-T-13-1 -1026-T-14-1 黄褐色壤土 黄褐色壤土 黄褐色壤土 黄褐色壤土 黄褐色壤土 精黄色壤土 精黄色壤土 7.36 7.40 7.33 7.35 7.30 2.84 3.53 6.31 6.91 6.63 0.14 0.36 0.22 0.18 0.14 1.6 0.5

共15页第14页

上表:

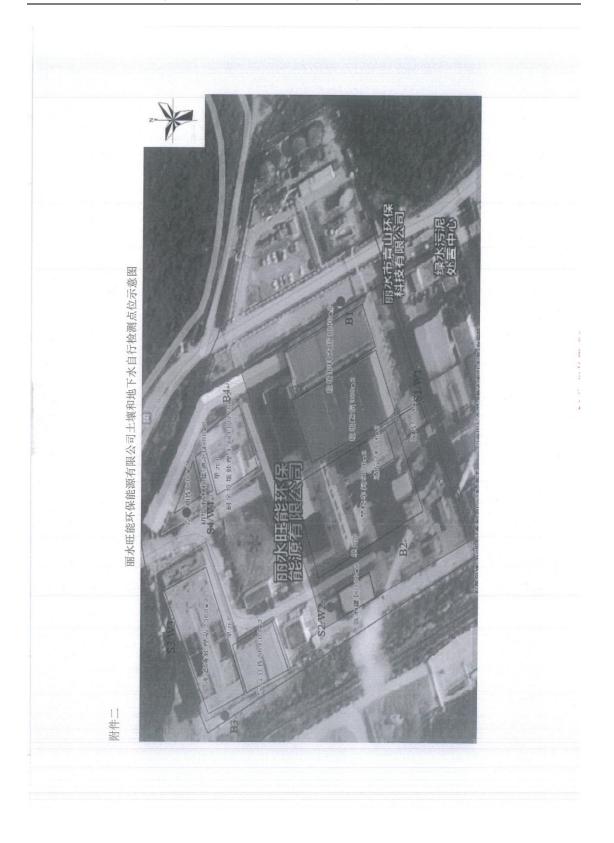
检测点位	S0	B1	B2	В3	B4	
采样深度(m)						
	0~0.5	0~0.5	0~0.5	0~0.5	0~0.5	
采样日期	10.25	10.26	10.26	10.26	10.26	T M
采样时间	11:20	09:34	09:49	10:03	09:57	标准
样品编号	RBS2210020	RBS2210020	RBS2210020	RBS2210020	RBS2210020	限值
	-1025-T-10-1	-1026-T-11-1	-1026-T-12-1	-1026-T-13-1	-1026-T-14-1	
样品性状	黄褐色壤土	黄褐色壤土	黄褐色壤土	黄褐色壤土	棕黄色壤土	
1,2-二氯乙烷 (mg/kg)	<1.3×10 ⁻³	5				
1,1-二氯乙烯 (mg/kg)	<1.0×10 ⁻³	66				
顺式-1,2-二氯 乙烯 (mg/kg)	<1.3×10 ⁻³	596				
反式-1,2-二氯 乙烯 (mg/kg)	<1.4×10 ⁻³	54				
1,1,1,2-四氯乙 烷 (mg/kg)	<1.2×10 ⁻³	10				
1,1,2,2-四氯乙 烷 (mg/kg)	<1.2×10 ⁻³	6.8				
1,2-二氯丙烷 (mg/kg)	<1.1×10 ⁻³	<1.1×10-3	<1.1×10-3	<1.1×10 ⁻³	<1.1×10 ⁻³	5
四氯乙烯 (mg/kg)	<1.4×10 ⁻³	<1.4×10 ⁻³	<1.4×10-3	<1.4×10 ⁻³	<1.4×10 ⁻³	53
1,1,1-三氯乙 烷 (mg/kg)	<1.3×10 ⁻³	840				
1,1,2-三氯乙 烷 (mg/kg)	<1.2×10 ⁻³	2.8				
三氯乙烯 (mg/kg)	<1.2×10 ⁻³	2.8				
1,2,3-三氯丙 烷(mg/kg)	<1.2×10 ⁻³	0.5				
氯乙烯 (mg/kg)	<1.0×10 ⁻³	0.43				
苯 (mg/kg)	<1.9×10 ⁻³	4				
甲苯(mg/kg)	<1.3×10 ⁻³	1200				
乙苯 (mg/kg)	<1.2×10 ⁻³	28				
间,对-二甲苯(mg/kg)	<1.2×10 ⁻³	570				
邻-二甲苯 (mg/kg)	<1.2×10 ⁻³	640				

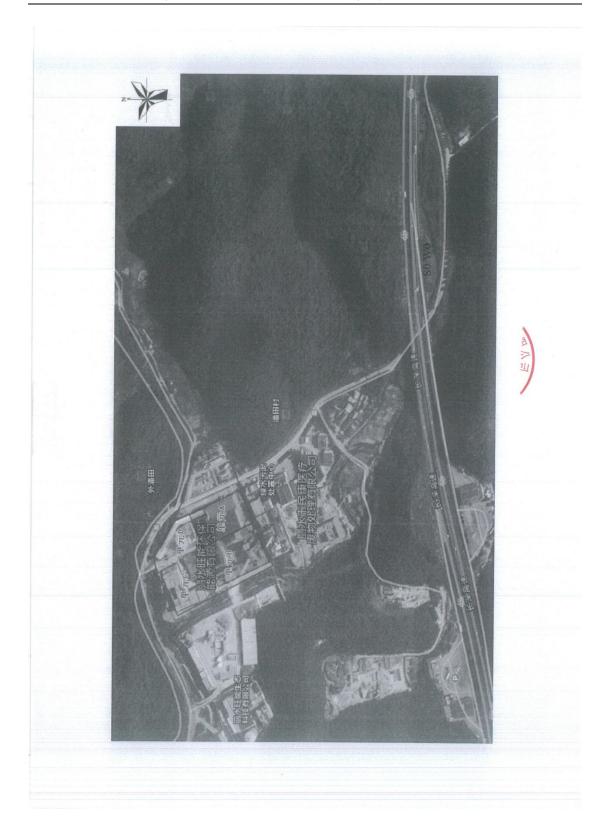
共15页 第15页

表		

127.						
检测点位	S0	B1	B2	В3	B4	
采样深度(m)	0~0.5	0~0.5	0~0.5	0~0.5	0~0.5	
采样日期	10.25	10.26	10.26	10.26	10.26	
采样时间	11:20	09:34	09:49	10:03	09:57	标准
样品编号	RBS2210020 -1025-T-10-1	RBS2210020 -1026-T-11-1	RBS2210020 -1026-T-12-1	RBS2210020 -1026-T-13-1	RBS2210020 -1026-T-14-1	限值
样品性状	黄褐色壤土	黄褐色壤土	黄褐色壤土	黄褐色壤土	棕黄色壤土	
苯乙烯 (mg/kg)	<1.1×10 ⁻³	<1.1×10-3	<1.1×10 ⁻³	<1.1×10 ⁻³	<1.1×10 ⁻³	1290
氯苯 (mg/kg)	<1.2×10 ⁻³	270				
1,2-二氯苯mg/kg	<1.5×10 ⁻³	560				
1,4-二氯苯mg/kg	<1.5×10 ⁻³	20				
硝基苯(mg/kg)	< 0.09	<0.09	<0.09	<0.09	< 0.09	76
苯胺 (mg/kg)	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	260
2-氯苯酚 (mg/kg)	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	2256
萘(mg/kg)	< 0.09	<0.09	<0.09	<0.09	<0.09	70
苯并[a]蒽(mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	15
苯并[b]荧蒽 (mg/kg)	<0.2	<0.2	<0.2	<0.2	<0.2	15
苯并[k]荧蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	151
苯并[a]芘(mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	1.5
二苯并[ah]蒽 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	1.5
茚并[1,2,3-cd]芘 (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	15
䓛(mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1	1293
石油烃(C ₁₀ ~C ₄₀) (mg/kg)	27	42	26	25	26	4500
水溶性氟化物 (mg/kg)	1.6	5.2	3.8	6.7	8.6	/
友计	标准限值执行	《土壤环境质量	建设用地土壤	夏污染风险管控	标准(试行)》(G	В

36600-2018)中的第二类用地的风险筛选值要求。 报告编制: 柔. 变


校核: 子院 审核: 龙鹬 批准日期: 》加. 11-6


附件一: 采样点位经纬度。 附件二: 丽水旺能环保能源有限公司土壤和地下水自行检测点位示意图。

附件一:

采样点位经纬度

点位	经纬度
W1	119° 50′ 16″ E, 28° 21′ 47″ N
W2	119° 50′ 10″ E, 28° 21′ 48″ N
W3	119° 50′ 8″ E, 28° 21′ 50″ N
W4	119° 50′ 14″ E, 28° 21′ 51″ N
W0	119° 50′ 18″ E, 28° 21′ 47″ N
S1	119° 50′ 16″ E, 28° 21′ 47″ N
S2	119° 50′ 10″ E, 28° 21′ 48″ N
S3	119° 50′ 8″ E, 28° 21′ 50″ N
S4	119° 50′ 14″ E, 28° 21′ 51″ N
S0	119° 50′ 18″ E, 28° 21′ 47″ N
B1	119° 50′ 15″ E, 28° 21′ 49″ N
B2	119° 50′ 11″ E, 28° 21′ 46″ N
В3	119° 50′ 10″ E, 28° 21′ 52″ N
B4	119° 50′ 11″ E, 28° 21′ 51″ N

检测报告

TEST REPORT

REPORTNO.

项目名称 地下水、土壤二噁英类检测

NAME OF SAMPLE

委托单位 浙江瑞博思检测科技有限公司

CUSTOMER

报告编制日期 2022 年 11 月 07 日

APPROVAL DATE

湖州瑞博思检测科技有限公司

Huzhou Ruibosi Testing Technology Co., Ltd.

RBSH2210106

共3页第1页

检测信息

项目名称		地下水、土壤二噁英类检测	检测类别	委托检测 (送样)
委托单位		浙江瑞博思检测科技有限公司	委托日期	2022.10.31
委托单位地址	杭州西湖区金蓬街 366 号 2 号楼 505		样品类别	地下水、土壤
到样日期		2022.10.31		14 个
样品来源		丽水旺能环保能		
分析地点	浙江名	浙江省湖州市龙溪街道环山路 899 号 D 分析日期 座 2 楼		2022.11.01~2022.11.07
	序号	仪器型号	仪器编号	
	1	ME104E 万分之一天平	A54	
检测仪器及编号	2	IKA-RV3 旋转蒸发仪	A31	
	3	SHZ-DIII循环水式多用真空	A45	
	4	IKA-RV3 旋转蒸发仪	A32	
	5	SHZ-DIII循环水式多用真空	A46	
	6	YP1002N 电子天平	A56	
	7	UC-23 智能静音超声波清洗	A39	
	8	MTN-2800W 氮吹仪	A37	
	9	赛默飞 DFS 高分辨双聚焦磁式	A55	
	10	HPFE 06 加速溶剂萃取仪	A53	
	11	DH3160 全自动液液萃取位	A29	

RBSH2210106

共3页第2页

一、检测依据:见表1。

表 1 检测依据

序号	项目	检测依据及标准号
1	二噁英类	水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.1-2008
2	二噁英类	土壤和沉积物 二噁英类的测定
2	二噁英类	同位素稀释高分辨气相色谱-高分辨质

二、检测结果: 地下水二噁英类检测结果见表 2, 土壤二噁英类检测结果见表 3。

表 2 地下水二噁英类检测结果

样品编号	样品名称	样品性状	二噁英类总毒性当量 (TEQ)质量浓度 (pg/L)
RBSH2210106-1031-S-1-1	RBS2210020-1026-S-1-1	无色透明	0.59
RBSH2210106-1031-S-2-1	RBS2210020-1026-S-2-1	无色透明	0.63
RBSH2210106-1031-S-3-1	RBS2210020-1026-S-3-1	无色透明	0.52
RBSH2210106-1031-S-4-1	RBS2210020-1026-S-4-1	无色透明	0.77
RBSH2210106-1031-S-5-1	RBS2210020-1026-S-5-1	无色透明	0.67

表 3 土壤二噁英类检测结果

样品编号	样品名称	样品性状	二噁英类总毒性当量 (TEQ)质量浓度 (ng/kg)
RBSH2210106-1031-T-1-1	RBS2210020-1025-T-6-1	棕褐色块状	16
RBSH2210106-1031-T-2-1	RBS2210020-1025-T-7-1	黄褐色颗粒	1.3
RBSH2210106-1031-T-3-1	RBS2210020-1026-T-8-1	杂色块状	6.5
RBSH2210106-1031-T-4-1	RBS2210020-1024-T-9-1	棕黄色块状	2.9
RBSH2210106-1031-T-5-1	RBS2210020-1025-T-10-1	黄褐色颗粒	1.2
RBSH2210106-1031-T-6-1	RBS2210020-1026-T-11-1	黄褐色颗粒	0.84

RBSH2210106

共3页第3页

接上表

样品编号	样品名称	样品性状	二噁英类总毒性当量 (TEQ)质量浓度 (ng/kg)
RBSH2210106-1031-T-7-1	RBS2210020-1026-T-12-1	黄褐色块状	3.4
RBSH2210106-1031-T-8-1	RBS2210020-1026-T-13-1	黄褐色颗粒	1.9
RBSH2210106-1031-T-9-1	RBS2210020-1026-T-14-1	棕黄色块状	2.2

报告编制: 夏灵伟 审核: 杨妈妈 批准人: 1克片水片 批准人职务: 医艾艾麦人 批准日期: 2022、11.9

以下空白

附件一: 二噁英类异构体检测数据和计算结果, 见表 1.1~表 1.16。

附件一:

表 1.1 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-S-1-1	样品名称	RBS22100	020-1026-S-1
	样品性状	无色透明	样品量(L) 检出限(ρ _{DL})	2.0 毒性当量 (TEQ) 质量浓度	
	二噁英类	实测质量浓度(ρ _s)			
		pg/L	pg/L	TEF	pg/L
4	2,3,7,8-T ₄ CDD	N.D.	0.2	×1	0.10
多氯代二苯并-对-二噁英	1,2,3,7,8-P ₅ CDD	0.54	0.4	×0.5	0.27
工	1,2,3,4,7,8-H ₆ CDD	N.D.	0.2	×0.1	0.010
本并	1,2,3,6,7,8-H ₆ CDD	N.D.	0.2	×0.1	0.010
对一	1,2,3,7,8,9-H ₆ CDD	N.D.	0.2	×0.1	0.010
一噁茁	1,2,3,4,6,7,8-H ₇ CDD	N.D.	0.2	×0.01	0.0010
大	O ₈ CDD	1.4	0.4	×0.001	0.0014
	2,3,7,8-T ₄ CDF	N.D.	0.3	×0.1	0.015
	1,2,3,7,8-P ₅ CDF	N.D.	0.3	×0.05	0.0075
	2,3,4,7,8-P ₅ CDF	N.D.	0.3	×0.5	0.075
多氯	1,2,3,4,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.34	0.2	×0.1	0.034
苯并	2,3,4,6,7,8-H ₆ CDF	0.30	0.2	×0.1	0.030
呋喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,4,6,7,8-H ₇ CDF	0.88	0.1	×0.01	0.0088
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.1	×0.01	0.00050
	O ₈ CDF	0.51	0.3	×0.001	0.00051
Σ	二噁英类总量 (PCDDs+PCDFs)	5.2	•		0.59

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限

表 1.2 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-S-2-1	样品名称	RBS22100)20-1026-S-2-1
	样品性状	无色透明	样品量(L)	2.0	
	二噁英类	实测质量浓度(p _s)	检出限(ppL)		性当量) 质量浓度
		pg/L	pg/L	TEF	pg/L
4	2,3,7,8-T ₄ CDD	N.D.	0.3	×1	0.15
多氯	1,2,3,7,8-P ₅ CDD	N.D.	0.5	×0.5	0.12
10	1,2,3,4,7,8-H ₆ CDD	N.D.	0.2	×0.1	0.010
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.29	0.2	×0.1	0.029
	1,2,3,7,8,9-H ₆ CDD	0.45	0.3	×0.1	0.045
	1,2,3,4,6,7,8-H ₇ CDD	N.D.	0.2	×0.01	0.0010
	O ₈ CDD	1.3	0.3	×0.001	0.0013
	2,3,7,8-T ₄ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,7,8-P₅CDF	N.D.	0.3	×0.05	0.0075
	2,3,4,7,8-P ₅ CDF	0.35	0.3	×0.5	0.18
多氯代二苯并呋喃	1,2,3,4,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
代二	1,2,3,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
苯并	2,3,4,6,7,8-H ₆ CDF	0.45	0.2	×0.1	0.045
呋喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,4,6,7,8-H ₇ CDF	N.D.	0.1	×0.01	0.00050
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.1	×0.01	0.00050
	O ₈ CDF	0.42	0.3	×0.001	0.00042
Σ	二噁英类总量 (PCDDs+PCDFs)	4.5	-	-	0.63

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.3 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-S-3-1	样品名称	RBS22100)20-1026-S-3-
	样品性状	无色透明	样品量(L)	2.0	
	二噁英类	实测质量浓度(p _s)	检出限(ppL)		性当量) 质量浓度
		pg/L	pg/L	TEF	pg/L
4	2,3,7,8-T ₄ CDD	N.D.	0.2	×1	0.10
多氯化	1,2,3,7,8-P₅CDD	0.46	0.4	×0.5	0.23
二	1,2,3,4,7,8-H ₆ CDD	N.D.	0.2	×0.1	0.010
本并	1,2,3,6,7,8-H ₆ CDD	0.27	0.2	×0.1	0.027
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	0.41	0.2	×0.1	0.041
	1,2,3,4,6,7,8-H ₇ CDD	0.42	0.2	×0.01	0.0042
天	O ₈ CDD	1.2	0.3	×0.001	0.0012
	2,3,7,8-T ₄ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,7,8-P ₅ CDF	N.D.	0.2	×0.05	0.0050
	2,3,4,7,8-P ₅ CDF	N.D.	0.2	×0.5	0.050
多氯代二苯并呋喃	1,2,3,4,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
代二	1,2,3,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
苯并	2,3,4,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
呋喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	×0.1	0.010
14	1,2,3,4,6,7,8-H ₇ CDF	0.18	0.09	×0.01	0.0018
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.09	×0.01	0.00045
	O ₈ CDF	0.33	0.3	×0.001	0.00033
Σ	二噁英类总量 (PCDDs+PCDFs)	4.2	-	-	0.52

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.4 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-S-4-1	样品名称	RBS22100	020-1026-S-4-1
	样品性状	无色透明	样品量(L)		2.0
	二噁英类	实测质量浓度(p _s)	检出限 (ρ _{DL})		性当量) 质量浓度
		pg/L	pg/L	TEF	pg/L
4	2,3,7,8-T ₄ CDD	N.D.	0.7	×1	0.35
多氯化	1,2,3,7,8-P ₅ CDD	N.D.	0.7	×0.5	0.18
17	1,2,3,4,7,8-H ₆ CDD	N.D.	0.3	×0.1	0.015
本并-	1,2,3,6,7,8-H ₆ CDD	N.D.	0.3	×0.1	0.015
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	N.D.	0.3	×0.1	0.015
一噁茁	1,2,3,4,6,7,8-H ₇ CDD	N.D.	0.3	×0.01	0.0015
大	O ₈ CDD	0.86	0.4	×0.001	0.00086
	2,3,7,8-T ₄ CDF	N.D.	0.3	×0.1	0.015
	1,2,3,7,8-P ₅ CDF	N.D.	0.3	×0.05	0.0075
	2,3,4,7,8-P ₅ CDF	N.D.	0.4	×0.5	0.10
多氯	1,2,3,4,7,8-H ₆ CDF	0.31	0.2	×0.1	0.031
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
苯并	2,3,4,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
呋 喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,4,6,7,8-H ₇ CDF	0.32	0.1	×0.01	0.0032
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.2	×0.01	0.0010
	O ₈ CDF	0.59	0.4	×0.001	0.00059
Σ	二噁英类总量 (PCDDs+PCDFs)	4.3	-		0.77

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.5 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-S-5-1	样品名称	RBS22100	020-1026-S-5-
SW	样品性状	无色透明	样品量(L)		2.0
	二噁英类	实测质量浓度(ρ _s)	检出限(ppL)		性当量)质量浓度
		pg/L	pg/L	TEF	pg/L
4	2,3,7,8-T ₄ CDD	N.D.	0.2	×1	0.10
多氯化	1,2,3,7,8-P ₅ CDD	N.D.	0.5	×0.5	0.12
多氯代二苯并-对-二噁英	1,2,3,4,7,8-H ₆ CDD	N.D.	0.3	×0.1	0.015
本并-	1,2,3,6,7,8-H ₆ CDD	N.D.	0.3	×0.1	0.015
对上	1,2,3,7,8,9-H ₆ CDD	0.94	0.3	×0.1	0.094
一噁五	1,2,3,4,6,7,8-H ₇ CDD	1.0	0.2	×0.01	0.010
	O ₈ CDD	4.4	0.5	×0.001	0.0044
	-2,3,7,8-T ₄ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,7,8-P ₅ CDF	0.41	0.3	×0.05	0.020
	2,3,4,7,8-P ₅ CDF	N.D.	0.3	×0.5	0.075
多氯代二苯并呋喃	1,2,3,4,7,8-H ₆ CDF	0.35	0.2	×0.1	0.035
代三	1,2,3,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
苯并	2,3,4,6,7,8-H ₆ CDF	0.41	0.2	×0.1	0.041
呋喃	1,2,3,7,8,9-H ₆ CDF	0.90	0.2	×0.1	0.090
	1,2,3,4,6,7,8-H ₇ CDF	2.4	0.2	×0.01	0.024
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.2	×0.01	0.0010
	O ₈ CDF	0.77	0.3	×0.001	0.00077
Σ	二噁英类总量 (PCDDs+PCDFs)	13		-	0.67

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用 "N.D." 表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.6 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-S-5-1'	样品名称	RBS2210	020-1026-S-5-
	样品性状	无色透明	样品量(L) 检出限(ρ _{DL})	2.0 毒性当量 (TEQ) 质量浓度	
	二噁英类	实测质量浓度 (ρ _s)			
		pg/L	pg/L	TEF	pg/L
女	2,3,7,8-T ₄ CDD	N.D.	0.2	×1	0.10
多氯化	1,2,3,7,8-P ₅ CDD	N.D.	0.5	×0.5	0.12
1	1,2,3,4,7,8-H ₆ CDD	0.55	0.3	×0.1	0.055
并-	1,2,3,6,7,8-H ₆ CDD	N.D.	0.3	×0.1	0.015
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	0.39	0.3	×0.1	0.039
	1,2,3,4,6,7,8-H ₇ CDD	2.1	0.3	×0.01	0.021
	O ₈ CDD	7.6	0.4	×0.001	0.0076
	2,3,7,8-T ₄ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,7,8-P ₅ CDF	0.62	0.3	×0.05	0.031
	2,3,4,7,8-P ₅ CDF	N.D.	0.3	×0.5	0.075
多氯弋二苯并夫南	1,2,3,4,7,8-H ₆ CDF	0.36	0.2	×0.1	0.036
于 二	1,2,3,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
花	2,3,4,6,7,8-H ₆ CDF	N.D.	0.2	×0.1	0.010
夫	1,2,3,7,8,9-H ₆ CDF	N.D.	0.2	×0.1	0.010
	1,2,3,4,6,7,8-H ₇ CDF	0.65	0.1	×0.01	0.0065
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.1	×0.01	0.00050
	O ₈ CDF	1.2	0.3	×0.001	0.0012
Σ	二噁英类总量 (PCDDs+PCDFs)	15	-	-	0.55

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.7	二噁英类异	构体检测数据和计算结果	
-------	-------	-------------	--

	样品编号	RBSH2210106-1031-T-1-1	样品名称	RBS221002	0-1025-T-6-1
	取样量 (g)	10.0119	水分 (%)	1.0	
	样品性状		棕褐色块状		×
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
	一喝夹矢	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.73	0.4	×1	0.73
多氯	1,2,3,7,8-P ₅ CDD	1.0	0.6	×0.5	0.50
代二	1,2,3,4,7,8-H ₆ CDD	2.1	0.7	×0.1	0.21
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	5.2	0.6	×0.1	0.52
对二	1,2,3,7,8,9-H ₆ CDD	6.3	0.6	×0.1	0.63
惡英	1,2,3,4,6,7,8-H ₇ CDD	66	0.9	×0.01	0.66
	O ₈ CDD	8.1×10 ²	1	×0.001	0.81
	2,3,7,8-T ₄ CDF	4.8	0.5	×0.1	0.48
	1,2,3,7,8-P ₅ CDF	9.2	1	×0.05	0.46
多	2,3,4,7,8-P ₅ CDF	12	0.8	×0.5	6.0
瓦代	1,2,3,4,7,8-H ₆ CDF	20	0.8	×0.1	2.0
	1,2,3,6,7,8-H ₆ CDF	12	0.8	×0.1	1.2
在	2,3,4,6,7,8-H ₆ CDF	-11	0.9	×0.1	1.1
夫	1,2,3,7,8,9-H ₆ CDF	1.8	1	×0.1	0.18
南	1,2,3,4,6,7,8-H ₇ CDF	69	0.6	×0.01	0.69
	1,2,3,4,7,8,9-H ₇ CDF	7.6	0.8	×0.01	0.076
	O ₈ CDF	37	0.4	×0.001	0.037
Σ	二噁英类总量 (PCDDs+PCDFs)	1.1×10³	-	-	16

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.8 二噁英类异构体	检测数据和计算结果
---------------	-----------

	样品编号 RBSH2210106-1031-T-2-1		样品名称	RBS2210020-	-1025-T-7-1
Sin	取样量 (g)	10.0147	水分 (%)	1.1	
	样品性状		黄褐色颗粒		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(TEC	Q) 质量浓度
	一喝英笑	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.14	0.08	×1	0.14
多氯	1,2,3,7,8-P ₅ CDD	N.D.	0.1	×0.5	0.025
代二	1,2,3,4,7,8-H ₆ CDD	0.34	0.1	×0.1	0.034
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.35	0.1	×0.1	0.035
对二二	1,2,3,7,8,9-H ₆ CDD	0.46	0.1	×0.1	0.046
噁英	1,2,3,4,6,7,8-H ₇ CDD	13	0.2	×0.01	0.13
	O ₈ CDD	3.3×10 ²	0.6	×0.001	0.33
	2,3,7,8-T ₄ CDF	0.12	0.07	×0.1	0.012
	1,2,3,7,8-P₅CDF	0.16	0.09	×0.05	0.0080
多	2,3,4,7,8-P ₅ CDF	0.72	0.09	×0.5	0.36
氯	1,2,3,4,7,8-H ₆ CDF	0.36	0.07	×0.1	0.036
代二	1,2,3,6,7,8-H ₆ CDF	0.46	0.07	×0.1	0.046
苯	2,3,4,6,7,8-H ₆ CDF	0.43	0.07	×0.1	0.043
并呋喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.07	×0.1	0.0035
	1,2,3,4,6,7,8-H ₇ CDF	1.9	0.06	×0.01	0.019
	1,2,3,4,7,8,9-H ₇ CDF	0.11	0.07	×0.01	0.0011
	O ₈ CDF	2.6	0.1	×0.001	0.0026
Σ	二噁英类总量 (PCDDs+PCDFs)	3.5×10 ²	-	-	1.3

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.9	二噁英类异构体检测数据和计算结果	

	样品编号	RBSH2210106-1031-T-3-1	样品名称	RBS221002	20-1026-T-8-1
	取样量 (g)	(g) 10.0116		1.8	
	样品性状		杂色块状		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
	一心关关	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.17	0.1	×1	0.17
多氯	1,2,3,7,8-P ₅ CDD	0.58	0.4	×0.5	0.29
代二	1,2,3,4,7,8-H ₆ CDD	1.2	0.3	×0.1	0.12
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	3.6	0.3	×0.1	0.36
对一二	1,2,3,7,8,9-H ₆ CDD	2.3	0.4	×0.1	0.23
噁英	1,2,3,4,6,7,8-H ₇ CDD	44	0.5	×0.01	0.44
	O ₈ CDD	1.6×10 ²	0.4	×0.001	0.16
	2,3,7,8-T ₄ CDF	3.1	0.2	×0.1	0.31
	1,2,3,7,8-P₅CDF	2.9	0.3	×0.05	0.15
多	2,3,4,7,8-P ₅ CDF	3.3	0.3	×0.5	1.6
氯	1,2,3,4,7,8-H ₆ CDF	6.7	0.3	×0.1	0.67
代二	1,2,3,6,7,8-H ₆ CDF	6.2	0.3	×0.1	0.62
苯	2,3,4,6,7,8-H ₆ CDF	8.4	0.3	×0.1	0.84
并呋喃	1,2,3,7,8,9-H ₆ CDF	2.0	0.3	×0.1	0.20
	1,2,3,4,6,7,8-H ₇ CDF	27	0.2	×0.01	0.27
	1,2,3,4,7,8,9-H ₇ CDF	3.7	0.2	×0.01	0.037
	O ₈ CDF	23	0.2	×0.001	0.023
Σ	二噁英类总量 (PCDDs+PCDFs)	3.0×10 ²	-		6.5

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量 (TEQ) 质量浓度时以 1/2 检出限计算。

表 1.10	二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-T-4-1	样品名称	RBS22100	20-1024-T-9-1	
	取样量 (g)	g) 10.0411		1.5		
	样品性状		棕黄色块状			
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(7	EQ)质量浓度	
	一心关关	ng/kg	ng/kg	TEF	ng /kg	
	2,3,7,8-T ₄ CDD	0.19	0.1	×1	0.19	
多氯	1,2,3,7,8-P ₅ CDD	N.D.	0.2	×0.5	0.050	
代三	1,2,3,4,7,8-H ₆ CDD	0.37	0.1	×0.1	0.037	
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.23	0.1	×0.1	0.023	
对二二	1,2,3,7,8,9-H ₆ CDD	0.42	0.1	×0.1	0.042	
噁英	1,2,3,4,6,7,8-H ₇ CDD	12	0.2	×0.01	0.12	
	O ₈ CDD	1.2×10³	0.7	×0.001	1.2	
	2,3,7,8-T ₄ CDF	0.51	0.1	×0.1	0.051	
	1,2,3,7,8-P₅CDF	0.59	0.1	×0.05	0.030	
多	2,3,4,7,8-P ₅ CDF	0.96	0.2	×0.5	0.48	
氯代	1,2,3,4,7,8-H ₆ CDF	2.2	0.1	×0.1	0.22	
=	1,2,3,6,7,8-H ₆ CDF	1.4	0.1	×0.1	0.14	
苯并	2,3,4,6,7,8-H ₆ CDF	2.0	0.1	×0.1	0.20	
呋	1,2,3,7,8,9-H ₆ CDF	0.29	0.1	×0.1	0.029	
喃	1,2,3,4,6,7,8-H ₇ CDF	7.3	0.09	×0.01	0.073	
	1,2,3,4,7,8,9-H ₇ CDF	0.47	0.1	×0.01	0.0047	
	O ₈ CDF	4.5	0.09	×0.001	0.0045	
Σ	二噁英类总量 (PCDDs+PCDFs)	1.2×10³	-		2.9	

2. 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。

3. 当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量 (TEQ) 质量浓度时以 1/2 检出限计算。

表 1.11 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2210106-1031-T-5-1	样品名称	RBS221002	0-1025-T-10-1
	取样量 (g)	10.0072	水分 (%)	1.0	
	样品性状		黄褐色颗粒	here are	
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
	二心关关	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	N.D.	0.07	×1	0.035
多氯	1,2,3,7,8-P₅CDD	N.D.	0.2	×0.5	0.050
多氯代二苯并-对-二噁英	1,2,3,4,7,8-H ₆ CDD	0.37	0.09	×0.1	0.037
本并-	1,2,3,6,7,8-H ₆ CDD	0.29	0.09	×0.1	0.029
对-二	1,2,3,7,8,9-H ₆ CDD	0.66	0.1	×0.1	0.066
噁英	1,2,3,4,6,7,8-H ₇ CDD	3.6	0.2	×0.01	0.036
	O ₈ CDD	2.4×10 ²	0.5	×0.001	0.24
	2,3,7,8-T ₄ CDF	0.14	0.09	×0.1	0.014
	1,2,3,7,8-P₅CDF	0.58	0.1	×0.05	0.029
多	2,3,4,7,8-P ₅ CDF	0.63	0.1	×0.5	0.32
氯代	1,2,3,4,7,8-H ₆ CDF	1.4	0.09	×0.1	0.14
=	1,2,3,6,7,8-H ₆ CDF	1.0	0.09	×0.1	0.10
苯并	2,3,4,6,7,8-H ₆ CDF	0.45	0.09	×0.1	0.045
呋 喃	1,2,3,7,8,9-H ₆ CDF	0.25	0.1	×0.1	0.025
	1,2,3,4,6,7,8-H ₇ CDF	2.1	0.07	×0.01	0.021
	1,2,3,4,7,8,9-H ₇ CDF	0.37	0.08	×0.01	0.0037
	O ₈ CDF	1.4	0.1	×0.001	0.0014
Σ	二噁英类总量 (PCDDs+PCDFs)	2.5×10 ²	-	-	1.2

^{2.} 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.12	二噁英类异	构体检测数	据和计算结果
--------	-------	-------	--------

	样品编号	RBSH2210106-1031-T-6-1	样品名称	RBS22100	20-1026-T-11-1
	取样量 (g)	g) 10.0134		1.6	
	样品性状		黄褐色颗粒		Terror F
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(ΓEQ)质量浓度
	一心天天	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050
多氯	1,2,3,7,8-P ₅ CDD	0.34	0.2	×0.5	0.17
代二	1,2,3,4,7,8-H ₆ CDD	0.31	0.1	×0.1	0.031
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	N.D.	0.1	×0.1	0.0050
对二	1,2,3,7,8,9-H ₆ CDD	0.78	0.1	×0.1	0.078
噁英	1,2,3,4,6,7,8-H ₇ CDD	6.3	0.2	×0.01	0.063
	O ₈ CDD	2.3×10 ²	1	×0.001	0.23
	2,3,7,8-T ₄ CDF	0.22	0.1	×0.1	0.022
	1,2,3,7,8-P ₅ CDF	0.60	0.1	×0.05	0.030
多	2,3,4,7,8-P ₅ CDF	0.18	0.1	×0.5	0.090
氯代	1,2,3,4,7,8-H ₆ CDF	0.16	0.09	×0.1	0.016
_	1,2,3,6,7,8-H ₆ CDF	0.11	0.08	×0.1	0.011
苯并	2,3,4,6,7,8-H ₆ CDF	0.22	0.1	×0.1	0.022
开 呋 喃	1,2,3,7,8,9-H ₆ CDF	0.14	0.1	×0.1	0.014
	1,2,3,4,6,7,8-H ₇ CDF	0.98	0.06	×0.01	0.0098
	1,2,3,4,7,8,9-H ₇ CDF	0.15	0.07	×0.01	0.0015
	O ₈ CDF	0.69	0.2	×0.001	0.00069
Σ	二噁英类总量 (PCDDs+PCDFs)	2.4×10²	-	•	0.84

2. 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。

3. 当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.13	二噁英类异构体检测数据和计算结果
--------	------------------

	样品编号	RBSH2210106-1031-T-7-1	样品名称	RBS22100	20-1026-T-12-1
	取样量 (g)	10.0312	水分 (%)	1.2	
	样品性状		黄褐色块状		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(ΓEQ)质量浓度
	一心天天	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.19	0.1	×1	0.19
多氯	1,2,3,7,8-P₅CDD	0.34	0.1	×0.5	0.17
代二	1,2,3,4,7,8-H ₆ CDD	0.42	0.1	×0.1	0.042
本并	1,2,3,6,7,8-H ₆ CDD	0.62	0.1	×0.1	0.062
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	0.55	0.1	×0.1	0.055
唿英	1,2,3,4,6,7,8-H ₇ CDD	27	0.3	×0.01	0.27
	O ₈ CDD	2.4×10³	0.5	×0.001	2.4
	2,3,7,8-T ₄ CDF	N.D.	0.08	×0.1	0.0040
	1,2,3,7,8-P ₅ CDF	N.D.	0.08	×0.05	0.0020
多	2,3,4,7,8-P ₅ CDF	N.D.	0.08	×0.5	0.020
氯	1,2,3,4,7,8-H ₆ CDF	0.38	0.06	×0.1	0.038
代二	1,2,3,6,7,8-H ₆ CDF	0.45	0.06	×0.1	0.045
苯并	2,3,4,6,7,8-H ₆ CDF	0.29	0.06	×0.1	0.029
呋	1,2,3,7,8,9-H ₆ CDF	0.27	0.07	×0.1	0.027
喃	1,2,3,4,6,7,8-H ₇ CDF	0.82	0.04	×0.01	0.0082
	1,2,3,4,7,8,9-H ₇ CDF	0.29	0.05	×0.01	0.0029
	O ₈ CDF	0.93	0.1	×0.001	0.00093
Σ	二噁英类总量 PCDDs+PCDFs)	2.4×10³			3.4

^{2.} 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.14	二噁英类异构体检测数据和计算结果
--------	------------------

	样品编号	RBSH2210106-1031-T-8-1	样品名称	RBS22100	20-1026-T-13-1		
	取样量 (g)	10.0518	水分 (%)		1.6		
	样品性状	黄褐色颗粒					
	二噁英类	实测质量浓度(w) 检出限(w _{DL}) 毒性当量(TE		TEQ) 质量浓度			
	- 6707	ng/kg	ng/kg	TEF	ng /kg		
	2,3,7,8-T ₄ CDD	N.D.	0.2	×1	0.10		
多氯	1,2,3,7,8-P ₅ CDD	0.34	0.2	×0.5	0.17		
代二	1,2,3,4,7,8-H ₆ CDD	0.56	0.2	×0.1	0.056		
本并	1,2,3,6,7,8-H ₆ CDD	0.28	0.2	×0.1	0.028		
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	0.51	0.2	×0.1	0.051		
噁英	1,2,3,4,6,7,8-H ₇ CDD	11	0.3	×0.01	0.11		
	O ₈ CDD	7.1×10 ²	0.7	×0.001	0.71		
	2,3,7,8-T ₄ CDF	N.D.	0.1	×0.1	0.0050		
	1,2,3,7,8-P ₅ CDF	0.16	0.1	×0.05	0.0080		
多	2,3,4,7,8-P ₅ CDF	0.96	0.1	×0.5	0.48		
氯	1,2,3,4,7,8-H ₆ CDF	1.1	0.1	×0.1	0.11		
代二	1,2,3,6,7,8-H ₆ CDF	0.21	0.1	×0.1	0.021		
苯并	2,3,4,6,7,8-H ₆ CDF	0.44	0.1	×0.1	0.044		
呋	1,2,3,7,8,9-H ₆ CDF	N.D.	0.1	×0.1	0.0050		
喃	1,2,3,4,6,7,8-H ₇ CDF	3.5	0.07	×0.01	0.035		
	1,2,3,4,7,8,9-H ₇ CDF	0.34	0.08	×0.01	0.0034		
	O ₈ CDF	0.93	0.1	×0.001	0.00093		
Σ (二噁英类总量 PCDDs+PCDFs)	7.3×10²	-	-	1.9		

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.15 二	惡英类异构体检测数据和计算结果
----------	-----------------

	样品编号	RBSH2210106-1031-T-9-1	样品名称	RBS22100	20-1026-T-14-1
	取样量 (g)	10.0427	水分 (%)	1.5	
	样品性状		棕黄色块状		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(TEQ)质量浓度
	一心犬犬	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050
多氯	1,2,3,7,8-P ₅ CDD	0.27	0.09	×0.5	0.14
代二	1,2,3,4,7,8-H ₆ CDD	0.52	0.09	×0.1	0.052
本并-	1,2,3,6,7,8-H ₆ CDD	N.D.	0.07	×0.1	0.0035
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	N.D.	0.08	×0.1	0.0040
	1,2,3,4,6,7,8-H ₇ CDD	14	0.3	×0.01	0.14
	O ₈ CDD	1.7×10³	0.5	×0.001	1.7
	2,3,7,8-T ₄ CDF	N.D.	0.08	×0.1	0.0040
	1,2,3,7,8-P ₅ CDF	N.D.	0.08	×0.05	0.0020
多	2,3,4,7,8-P ₅ CDF	0.12	0.07	×0.5	0.060
氯	1,2,3,4,7,8-H ₆ CDF	0.063	0.04	×0.1	0.0063
代二	1,2,3,6,7,8-H ₆ CDF	0.10	0.04	×0.1	0.010
苯并	2,3,4,6,7,8-H ₆ CDF	0.18	0.04	×0.1	0.018
叶	1,2,3,7,8,9-H ₆ CDF	0.12	0.05	×0.1	0.012
喃	1,2,3,4,6,7,8-H ₇ CDF	N.D.	0.03	×0.01	0.00015
	1,2,3,4,7,8,9-H ₇ CDF	0.15	0.03	×0.01	0.0015
	O ₈ CDF	0.14	0.1	×0.001	0.00014
Σ	二噁英类总量 PCDDs+PCDFs)	1.7×10³	-		2.2

^{2.} 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.16 二	一噁英类异构体检测数据和计算结	里
----------	-----------------	---

	样品编号	RBSH2210106-1031-T-9-1'	样品名称	RBS22100	20-1026-T-14-1
	取样量 (g)	10.0518	水分 (%)		1.5
	样品性状		棕黄色块状		
	二噁英类	实测质量浓度(w) 检出限(w _{DL}) 毒性当量(毒性当量(TEQ) 质量浓度
	一心大大	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050
多氯	1,2,3,7,8-P ₅ CDD	0.26	0.1	×0.5	0.13
代二	1,2,3,4,7,8-H ₆ CDD	N.D.	0.09	×0.1	0.0045
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.16	0.07	×0.1	0.016
对二	1,2,3,7,8,9-H ₆ CDD	0.36	0.08	×0.1	0.036
^鳴 英	1,2,3,4,6,7,8-H ₇ CDD	12	0.3	×0.01	0.12
	O ₈ CDD	1.7×10 ³	0.6	×0.001	1.7
	2,3,7,8-T ₄ CDF	0.095	0.07	×0.1	0.0095
	1,2,3,7,8-P ₅ CDF	0.069	0.06	×0.05	0.0034
多	2,3,4,7,8-P ₅ CDF	0.069	0.05	×0.5	0.034
氯代	1,2,3,4,7,8-H ₆ CDF	N.D.	0.03	×0.1	0.0015
=	1,2,3,6,7,8-H ₆ CDF	0.083	0.03	×0.1	0.0083
苯并	2,3,4,6,7,8-H ₆ CDF	0.055	0.04	×0.1	0.0055
呋	1,2,3,7,8,9-H ₆ CDF	N.D.	0.04	×0.1	0.0020
喃	1,2,3,4,6,7,8-H ₇ CDF	0.15	0.02	×0.01	0.0015
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.03	×0.01	0.00015
	O ₈ CDF	0.13	0.07	×0.001	0.00013
Σ	二噁英类总量 PCDDs+PCDFs)	1.7×10³	-		2.1

^{2.} 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

CIRS

检测报告

报告编号: EN22100331

丽水旺能环保能源有限公司土壤和地下水 自行检测

委托单位 浙江瑞博思检测科技有限公司

受测单位* 丽水旺能环保能源有限公司

报告日期 2022-11-03

项目名称

杭州希科检测技术有限公司

声明

- 一、本报告无授权签字人签名无效;本报告涂改无效。
- 二、本报告未盖本公司检验检测专用章及骑缝章无效。
- 三、未经本公司书面批准,不得部分复制本报告。
- 四、未经同意本报告不得用于广告、商业宣传等商业行为。
- 五、由委托方送检的样品,本报告只对来样负责。
- 六、委托方若对本报告有异议,请于收到本报告十五个工 作日内向本公司提出。
- 七、本公司承诺对委托方的商业信息、技术文件、检测报 告等有保密的义务。
- 八、本公司不负责对客户提供的信息的真实性进行证实。
- 九、未加盖资质章的报告仅供客户质量控制使用。
- 十、客户提供的受测样品量不满足复测、仲裁所需,视同 客户放弃复测、仲裁权利。

单位名称: 杭州希科检测技术有限公司

联系地址: 浙江省杭州市滨安路 1180 号华业高科技产业园 4 号楼 1 层

邮政编码: 310052

联系电话: 0571-87206572 传 真: 0571-89900719 电子邮件: hj@cirs-group.com 网 址: www.cirs-ck.com

杭州希科检测技术有限公司

地址: 杭州市滨江区滨安路 1180 号华业高科技产业园 4 号楼 1 层和 3 号楼 4 层 邮编: 310052 热线电话: 4006-721-723 电话: +86 571-8720 6572 传真: +86 571-8990 0719 邮箱: hj@cirs-group.com 阿址: www.cirs-ck.com

报告编号: EN2210033

日期: 2022-11-03

第1页/共2页

检测报告

受测单位*	丽水旺能环保能源有限公司					
受测单位地址*	浙江省丽水市莲都区南明山街道潘田村					
检测类别	委托检测(送样)	样品名称	RBS2210020-1020-S-1-1, RBS2210020-1020-S-2-1, RBS2210020-1020-S-3-1, RBS2210020-1020-S-4-1, RBS2210020-1020-S-5-1			
送样日期	2022-10-28	检测日期	2022-10-28~2022-11-03			
检测结果	检测结果见续页					
评判标准	Carrier Charles	Contraction of the second	High Physics Citizen Philips			
结 论	Secretary of the Control of the Cont	THE THE CHARLES THE THE	COMPANY OF THE PROPERTY OF THE			
备注	带*由委托单位提供,本公司不负责确认。					

編制: 孟祷

申核: 本雪峰

授权签字人:

本爱知

李雪峰

李爱红

签发日期: 2022-11-03

杭州希科检测技术有限公司

报告编号: EN22100331

日期: 2022-11-03

第2页/共2页

检测报告

一、 检测项目及方法

样品类别	检测项目	检测方法
HE TO A	碘化物	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.5-2006
地下水	石油烃 (C ₁₀ -C ₄₀)	水质 可萃取性石油烃(C_{10} - C_{40})的测定 气相色谱法 HJ 894-2017

二、检测结果

地下水检测

		NO 1 1/1/17/1/1			
样品名称	样品性状	样品编号	检测项目	检测结果	单位
The state of	, G	Control of the	碘化物	< 0.05	mg/L
RBS2210020-1020-S-1-1	无色透明液体	EN22100331W01	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	THE TELL	Class, No	碘化物	< 0.05	mg/L
RBS2210020-1020-S-2-1	无色透明液体	EN22100331W02	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	THE TRUE	ALE CO	碘化物	< 0.05	mg/L
RBS2210020-1020-S-3-1	无色透明液体	EN22100331W03	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	in the	55 S. S. S. S. S. S.	碘化物	< 0.05	mg/L
RBS2210020-1020-S-4-1	无色透明液体	EN22100331W04	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L
	15 to 165 to	The Market	碘化物	< 0.05	mg/L
RBS2210020-1020-S-5-1	无色透明液体	EN22100331W05	石油烃 (C ₁₀ -C ₄₀)	<0.01	mg/L

报告结束

附件 9 2023 年土壤和地下水检测结果

TEST REPORT

报告编号

181112052297

RBS2312024

REPORTNO.

项目名称______丽水旺能环保能源有限公司土壤自行检测

NAME OF SAMPLE

委托单位

丽水旺能环保能源有限公司

CUSTOMER

报告编制日期_

2023年12月11日

REPORT DATE

浙江瑞博思检测科技有限公司

Zhejiang Ruibosi Testing/Technology Co., Ltd.

RBS2312024

共2页第1页

检测信息

	1			
项目名称	丽水	 E E E E E E E E E 	检测类别	委托检测
委托单位		丽水旺能环保能源有限公司	委托日期	2023.12.01
委托单位 地址	Ĭ	丽水市莲都区南明山街道潘田村	样品类别	土壤
采样单位		浙江瑞博思检测科技有限公司	采样日期	2023.12.05
采样地点		道潘田村		
分析地点	杭州西	F湖区青蓝科创园 D 座 2 号楼东侧 5 楼实验室		
	序号	仪器型号及名称	仪器编号	
	1	mp5002 电子天平	A31	
	2	GZX9140MBE 电热鼓风干燥箱	A17	
	3	PHSJ-3F pH 计	A104	
检测仪器	4	SHA-B 双功能水浴恒温振荡器	A55	
及编号	5	RE-52AA 旋转蒸发仪	A53	
	6	JC-WD-12 氮吹仪	A54	
	7	7890B 气相色谱仪		A04
	8	SJIA-12N-60A 真空冷冻干燥机	A96	
	9	HPFE 06 高通量加压流体萃取仪		A90

一、检测方法依据:见表1。

表 1 检测方法

序号	项目	检测分析方法及标准号
_1	pH 值	土壤 pH 值的测定 电位法 HJ 962-2018
2	石油烃(C10-C40)	土壤和沉积物 石油烃 (C ₁₀ -C ₄₀) 的测定 气相色谱法 HJ 1021-2019

RBS2312024

共2页 第2页

二、检测结果: 见表 2。

表 2 检测结果

	人名 位例 4 木				
检测点位	1A01 (119°50'15"E	1A02 (119°50'11"E	1B01 (119°50'10"E	1B02 (119°50'14"E	
77 IV F7 441	28°21'48"N)	28°21'46"N)	28°21'50"N)	28°21'50"N)	
采样日期	12.05	12.05	12.05	12.05	
采样时间	15:43	15:27	15:33	15:39	限值
采样深度 (m)	0~0.2	0~0.2	0~0.2	0~0.2	
样品编号	RBS2312024-	RBS2312024-	RBS2312024-	RBS2312024-	
11 114-710 3	1205-T-1-1	1205-T-2-1	1205-T-3-1	1205-T-4-1	
样品性状	棕黄色	棕黄色	棕黄色	棕黄色	
11 HH LL-V	砂壤土	砂壤土	砂壤土	砂壤土	
pH 值(无量纲)	6.86	6.97	7.12	6.91	A A
石油烃 (C ₁₀ -C ₄₀) (mg/kg)	<6	<6	<6	<6	4500
备注	备注 限值执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)。专用草 (GB 36600-2018)中的第二类用地的风险筛选值要求。				专用草

报告编制: 香泉不》 审核: 多彩 批准人职务: 大大龙杏人 批准日期: 2013. 12.11

以下空白

TEST REPORT

REPORTNO.

项目名称_____丽水旺能环保能源有限公司地下水自行检测

NAME OF SAMPLE

委托单位 丽水旺能环保能源有限公司

CUSTOMER

报告编制日期_____2023 年 12 月 11 日

REPORT DATE

Zhejiang Ruibosi Testing Technology Co., Ltd.

RBS2312025

共2页 第1页

检测信息

项目名称	兰溪	旺能环保能源有限公司土壤和地下 水自行检测	检测类别	委托检测
委托单位		兰溪旺能环保能源有限公司	委托日期	2023.12.01
委托单位 地址		金华市兰溪市女埠街道渡三村	样品类别	地下水
采样单位		浙江瑞博思检测科技有限公司	采样日期	2023.12.05
采样地点		金华市兰溪市女埠街		
分析地点	杭州西	万湖区青蓝科创园 D 座 2 号楼东侧 分析日期 5 楼实验室		2023.12.05~12.11
	序号	仪器型号及名称	仪器编号	
	1	PHB-5 便携式 pH 计	B76	
	2	AFS-8520 原子荧光光谱仪	A05	
	3	752 紫外可见分光光度计	A92	
检测仪器	4	7890B 气相色谱仪	A04	
及编号	5	RE-52AA 旋转蒸发仪	A53	
	6	JC-WD-12 氮吹仪	A54	
	7	Agilent5110 电感耦合等离子体光	A02	
	8	7800 等离子体质谱仪(ICP-MS	()	A97
	9	SD46-1 智能电热板	A108	

一、检测方法依据:见表1。

表 1 检测方法

序号	· 项目 检测依据及标准号		
1	pH值	水质 pH值的测定 电极法 HJ 1147-2020	
2	铁、锰、铜、锌、 铝、镉、铅、总铬、 铍、钴、铊、镍	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	
3	可萃取性石油烃 (C ₁₀ -C ₄₀)	水质 可萃取性石油烃 (C ₁₀ -C ₄₀) 的测定 气相色谱法 HJ 894-2017	
4	钠	水质 32 种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015	
5	汞、砷、硒、锑	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	
6	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987	

RBS2312025

共2页 第2页

二、地下水检测结果: 见表 2。

表 2 检测结果

	W1	W2	2 位则结果 W3	W4	W0	
检测点位	(119°50'14"E	(119°50'10"E	(119°50'8"E	(119°50'15"E	(119°50'18"E	
	28°21'508"N)	28°21'48"N)	28°21'50"N)	28°21'47"N)	28°21'48"N)	
采样日期	12.05	12.05	12.05	12.05	12.05	标准
采样时间	15:03	14:48	14:39	14:55	14:29	限值
样品编号	RBS2312025-	RBS2312025-	RBS2312025-	RBS2312025-	RBS2312025-	IKI
1十四期 与	1205-S-1-1	1205-S-2-1	1205-S-3-1	1205-S-4-1	1205-S-5-1	
样品性状	无色透明	无色透明	无色透明	无色透明	无色透明	
pH 值 (无量纲)	7.2	7.4	7.4	7.3	6.7	5.5≤pH<6.5, 8.5 <ph≤9.0< td=""></ph≤9.0<>
铁 (mg/L)	1.29×10 ⁻²	8.94×10 ⁻³	5.72×10 ⁻³	2.37×10 ⁻³	2.65×10 ⁻³	2.0
锰 (mg/L)	4.48×10 ⁻²	7.77×10 ⁻²	2.83×10 ⁻²	0.29	0.51	1.50
铜 (mg/L)	6.54×10 ⁻³	1.71×10 ⁻³	4.04×10 ⁻³	1.44×10 ⁻³	1.18×10 ⁻³	1.50
锌 (mg/L)	4.09×10 ⁻²	2.03×10 ⁻²	1.43	0.29	0.10	5.00
铝 (mg/L)	8.42×10 ⁻²	5.02×10 ⁻²	5.02×10 ⁻²	3.14×10 ⁻²	2.32×10 ⁻² 2	0.50
钠 (mg/L)	62.8	10.5	84.0	23.4	6.04	400
镉 (mg/L)	4.44×10 ⁻⁴	7.80×10 ⁻⁵	3.16×10 ⁻⁴	1.30×10 ⁻⁴	7.30×10 ⁻⁵	0.01
铅 (mg/L)	1.14×10 ⁻²	9.71×10 ⁻⁴	9.30×10 ⁻³	2.00×10 ⁻³	2.35×10 ⁻³	0.10
总铬 (mg/L)	1.66×10 ⁻³	2.07×10 ⁻⁴	1.83×10 ⁻³	3.06×10 ⁻⁴	1.70×10 ⁻⁴	田童人
铍 (mg/L)	4.93×10 ⁻⁴	1.12×10 ⁻⁴	1.62×10 ⁻⁴	1.03×10 ⁻⁴	6.60×10 ⁻⁵	0.06
钴 (mg/L)	5.14×10 ⁻⁴	9.40×10 ⁻⁵	3.88×10 ⁻⁴	1.16×10 ⁻⁴	1.68×10 ⁻³	0.10
铊 (mg/L)	6.76×10 ⁻⁴	1.69×10 ⁻⁴	3.18×10 ⁻⁴	1.68×10 ⁻⁴	1.09×10 ⁻⁴	0.001
镍 (mg/L)	3.00×10 ⁻³	6.84×10 ⁻⁴	3.00×10 ⁻³	8.24×10 ⁻⁴	4.32×10 ⁻³	0.10
汞 (mg/L)	<4.00×10 ⁻⁵	<4.00×10-5	<4.00×10 ⁻⁵	<4.00×10 ⁻⁵	<4.00×10 ⁻⁵	0.002
砷 (mg/L)	7.13×10 ⁻⁴	<3.00×10 ⁻⁴	1.82×10 ⁻³	1.28×10 ⁻³	<3.00×10 ⁻⁴	0.05
硒 (mg/L)	<4.00×10 ⁻⁴	0.1				
锑 (mg/L)	<2.00×10 ⁻⁴	<2.00×10 ⁻⁴	7.84×10 ⁻⁴	8.75×10 ⁻⁴	<2.00×10 ⁻⁴	0.01
六价铬(mg/L)	<0.004	< 0.004	<0.004	< 0.004	< 0.004	0.10
可萃取性石油 烃 (C ₁₀ -C ₄₀)	0.02	0.04	0.06	0.05	0.02	/
(mg/L) 备注	标准限值	参照《地下水》	质量标准》(GI	B/T 14848-2017) 中的类标准	IV类。

报告编制: 香奶河 审核: 考验 批准人职务: 去去去去人 批准日期: 2013. 2.11

以下空白

APPROVALDATE

检测报告

TEST REPORT

 报告编号
 RBSH2306027

 REPORT NO.
 水质二噁英类检测

 NAME OF SAMPLE
 浙江瑞博思检测科技有限公司

 CUSTOMER
 2023 年 06 月 19 日

湖州瑞博思检测科技有限公司

Huzhou Ruibosi Testing Technology Co., Ltd.

RBSH2306027

共2页第1页

检测信息

项目名称		水质二噁英类检测	检测类别	委托检测 (送样)	
委托单位	Ä	折江瑞博思检测科技有限公司	委托日期	2023.06.12	
委托单位	杭州西	西湖区三墩镇金蓬街 366 号青蓝科	样品类别	地下水	
地址		创园 D 座 2 号楼西门 505	地下水		
到样日期		2023.06.12	样品数量	5 个	
样品来源		丽水旺能环保能:	源有限公司		
分析地点	浙江省湖州市龙溪街道环山路 899 号 D 分析日期 座 2 楼			2023,06.12~2023.06.16	
	序号	序号 仪器型号		仪器编号	
	1	IKA-RV3 旋转蒸发仪	A31		
	2	SHZ-DIII循环水式多用真空	A45		
	3	IKA-RV3 旋转蒸发仪		A32	
检测仪器	4	SHZ-DIII循环水式多用真空	A46		
及编号	5	YP1002N 电子天平	A56		
	6	UC-23 智能静音超声波清涉	A39		
	7	MTN-2800W 氮吹仪	A37		
	8	赛默飞 DFS 高分辨双聚焦磁式	质谱仪	A55	
	9	DH3160 全自动液液萃取位	A29		

RBSH2306027

共2页第2页

一、检测依据: 见表 1。

表 1 检测依据

	-r* H	IA NO AND THE SECOND CO.
序号	项目	检测依据及标准号
1	二噁英类	水质 二噁英类的测定
1	一地关关	同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.1-2008

二、检测结果:二噁英类检测结果见表 2。

表 2 二噁英类检测结果

			二噁英类总毒性当量
样品编号	样品名称	样品性状	(TEQ) 质量浓度 (pg/L)
RBSH2306027-0612-S-1-1	RBS2306048-0609-S-1-1	无色透明	0.41
RBSH2306027-0612-S-2-1	RBS2306048-0609-S-2-1	无色透明	0.24
RBSH2306027-0612-S-3-1	RBS2306048-0609-S-3-1	无色透明	0.27
RBSH2306027-0612-S-4-1	RBS2306048-0609-S-4-1	无色透明	0.21
RBSH2306027-0612-S-5-1	RBS2306048-0609-S-5-1	无色透明	0.38

报告编制: 芝名作 审核: 批准人: 18的的

批准人职务: 反发火机 批准日期: 2013.6.20

以下空白

附件一: 二噁英类异构体检测数据和计算结果, 见表 1.1~表 1.7。

附件一:

表 1.1 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2306027-0612-S-1-1	样品名称	RBS23060	48-0609-S-1-1
	样品性状	品性状 无色透明 样品量(L)		2.0	2.0
	二噁英类	实测质量浓度 (ρ _s)		毒性当量 (TEQ)质量浓度	
		pg/L	pg/L	TEF	pg/L
to	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050
多氯	1,2,3,7,8-P ₅ CDD	0.090	0.09	×0.5	0.045
代三	1,2,3,4,7,8-H ₆ CDD	0.17	0.05	×0.1	0.017
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.14	0.05	×0.1	0.014
对	1,2,3,7,8,9-H ₆ CDD	N.D.	0.05	×0.1	0.0025
噁	1,2,3,4,6,7,8-H ₇ CDD	0.30	0.06	×0.01	0.0030
大	O ₈ CDD	29	0.2	×0.001	0.029
	2,3,7,8-T ₄ CDF	0.15	0.08	×0.1	0.015
	1,2,3,7,8-P ₅ CDF	0.18	0.06	×0.05	0.0090
	2,3,4,7,8-P ₅ CDF	0.26	0.06	×0.5	0.13
多氯	1,2,3,4,7,8-H ₆ CDF	0.23	0.04	×0.1	0.023
代	1,2,3,6,7,8-H ₆ CDF	0.19	0.04	×0.1	0.019
多氯代二苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.11	0.04	×0.1	0.011
呋喃	1,2,3,7,8,9-H ₆ CDF	0.33	0.05	×0.1	0.033
113	1,2,3,4,6,7,8-H ₇ CDF	0.38	0.04	×0.01	0.0038
	1,2,3,4,7,8,9-H ₇ CDF	0.30	0.05	×0.01	0.0030
	O ₈ CDF	1.6	0.1	×0.001	0.0016
Σ	二噁英类总量 (PCDDs+PCDFs)	34	-	-	0.41

- 注: 1. 实测质量浓度(ps): 二噁英类质量浓度测定值 (pg/L)。
 - 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。
 - 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
 - 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.2 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2306027-0612-S-1-1'	样品名称	RBS230604	48-0609-S-1-1
	样品性状	无色透明	无色透明 样品量(L)		2.0
	二噁英类	实测质量浓度 (ρ _s)		毒性当量 (TEQ)质量浓度	
		pg/L	pg/L	TEF	pg/L
N	2,3,7,8-T ₄ CDD	0.15	0.1	×1	0.15
多氯	1,2,3,7,8-P ₅ CDD	0.090	0.09	×0.5	0.045
多氯代二苯并-对-二噁英	1,2,3,4,7,8-H ₆ CDD	N.D.	0.05	×0.1	0.0025
本并	1,2,3,6,7,8-H ₆ CDD	N.D.	0.05	×0.1	0.0025
对	1,2,3,7,8,9-H ₆ CDD	0.11	0.05	×0.1	0.011
噁	1,2,3,4,6,7,8-H ₇ CDD	0.18	0.06	×0.01	0.0018
大	O ₈ CDD	27	0.2	×0.001	0.027
	2,3,7,8-T ₄ CDF	N.D.	0.09	×0.1	0.0045
	1,2,3,7,8-P ₅ CDF	0.21	0.06	×0.05	0.010
	2,3,4,7,8-P ₅ CDF	0.12	0.06	×0.5	0.060
多氯	1,2,3,4,7,8-H ₆ CDF	0.22	0.04	×0.1	0.022
代	1,2,3,6,7,8-H ₆ CDF	0.080	0.03	×0.1	0.0080
多氯代二苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.12	0.04	×0.1	0.012
呋喃	1,2,3,7,8,9-H ₆ CDF	0.12	0.05	×0.1	0.012
1.4	1,2,3,4,6,7,8-H ₇ CDF	0.37	0.03	×0.01	0.0037
	1,2,3,4,7,8,9-H ₇ CDF	0.12	0.04	×0.01	0.0012
	O ₈ CDF	1.8	0.1	×0.001	0.0018
Σ	二噁英类总量 (PCDDs+PCDFs)	31	-	-	0.38

- 注: 1. 实测质量浓度(ps): 二噁英类质量浓度测定值 (pg/L)。
 - 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
 - 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
 - 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限 计算。

表 1.3 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2306027-0612-S-2-1	样品名称	RBS23060	48-0609-S-2-1	
	样品性状	无色透明	样品量(L)		2.0	
	二噁英类	字测质量浓度 (ps)		毒性当量 (TEQ)质量浓度		
		pg/L	pg/L	TEF	pg/L	
to.	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050	
多氯化	1,2,3,7,8-P ₅ CDD	0.10	0.09	×0.5	0.050	
多氯代二苯并-对-二噁英	1,2,3,4,7,8-H ₆ CDD	N.D.	0.05	×0.1	0.0025	
本并-	1,2,3,6,7,8-H ₆ CDD	N.D.	0.04	×0.1	0.0020	
对	1,2,3,7,8,9-H ₆ CDD	N.D.	0.04	×0.1	0.0020	
噁	1,2,3,4,6,7,8-H ₇ CDD	0.14	0.05	×0.01	0.0014	
大	O ₈ CDD	8.9	0.1	×0.001	0.0089	
	2,3,7,8-T ₄ CDF	0.15	0.09	×0.1	0.015	
	1,2,3,7,8-P ₅ CDF	0.25	0.05	×0.05	0.012	
	2,3,4,7,8-P ₅ CDF	0.12	0.05	×0.5	0.060	
多氯	1,2,3,4,7,8-H ₆ CDF	0.060	0.03	×0.1	0.0060	
代	1,2,3,6,7,8-H ₆ CDF	0.090	0.03	×0.1	0.0090	
多氯代二苯并呋喃	2,3,4,6,7,8-H ₆ CDF	N.D.	0.03	×0.1	0.0015	
呋喃	1,2,3,7,8,9-H ₆ CDF	0.16	0.04	×0.1	0.016	
1.4	1,2,3,4,6,7,8-H ₇ CDF	0.51	0.03	×0.01	0.0051	
	1,2,3,4,7,8,9-H ₇ CDF	0.050	0.04	×0.01	0.00050	
	O ₈ CDF	0.62	0.08	×0.001	0.00062	
Σ	二噁英类总量 (PCDDs+PCDFs)	11		-	0.24	

- 注: 1. 实测质量浓度(ps): 二噁英类质量浓度测定值 (pg/L)。
 - 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
 - 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
 - 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.4 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2306027-0612-S-3-1	样品名称	RBS23060	48-0609-S-3-1
	样品性状	无色透明 样品量(L)		2.0 毒性当量 (TEQ) 质量浓度	
	二噁英类	字测质量浓度 (ps)			
		pg/L	pg/L	TEF	pg/L
4	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050
多氯代二苯并-对-二噁英	1,2,3,7,8-P ₅ CDD	N.D.	0.08	×0.5	0.020
工	1,2,3,4,7,8-H ₆ CDD	0.12	0.04	×0.1	0.012
本 并	1,2,3,6,7,8-H ₆ CDD	N.D.	0.04	×0.1	0.0020
对	1,2,3,7,8,9-H ₆ CDD	0.090	0.04	×0.1	0.0090
噁	1,2,3,4,6,7,8-H ₇ CDD	0.50	0.06	×0.01	0.0050
火	O ₈ CDD	42	0.2	×0.001	0.042
	2,3,7,8-T ₄ CDF	0.13	0.07	×0.1	0.013
	1,2,3,7,8-P ₅ CDF	0.10	0.06	×0.05	0.0050
	2,3,4,7,8-P ₅ CDF	0.13	0.06	×0.5	0.065
多氯	1,2,3,4,7,8-H ₆ CDF	0.15	0.04	×0.1	0.015
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.14	0.04	×0.1	0.014
苯并	2,3,4,6,7,8-H ₆ CDF	N.D.	0.04	×0.1	0.0020
呋喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.05	×0.1	0.0025
	1,2,3,4,6,7,8-H ₇ CDF	0.95	0.04	×0.01	0.0095
	1,2,3,4,7,8,9-H ₇ CDF	0.11	0.05	×0.01	0.0011
	O ₈ CDF	1.2	0.1	×0.001	0.0012
Σ	二噁英类总量 (PCDDs+PCDFs)	46	-	-	0.27

- 注: 1. 实测质量浓度(ps): 二噁英类质量浓度测定值 (pg/L)。
 - 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。
 - 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
 - 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.5 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2306027-0612-S-4-1	样品名称	RBS230604	48-0609-S-4-1	
	样品性状	无色透明	透明 样品量(L)		2.0	
	二噁英类 实测质量浓度 (ps)		检出限 (pDL)	毒性当量 (TEQ)质量浓度		
		pg/L	pg/L	TEF	pg/L	
As .	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050	
多氯	1,2,3,7,8-P ₅ CDD	N.D.	0.1	×0.5	0.025	
75	1,2,3,4,7,8-H ₆ CDD	N.D.	0.06	×0.1	0.0030	
本 并	1,2,3,6,7,8-H ₆ CDD	0.090	0.06	×0.1	0.0090	
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	0.090	0.06	×0.1	0.0090	
噁	1,2,3,4,6,7,8-H ₇ CDD	0.33	0.08	×0.01	0.0033	
关	O ₈ CDD	20	0.2	×0.001	0.020	
	2,3,7,8-T ₄ CDF	N.D.	0.1	×0.1	0.0050	
	1,2,3,7,8-P ₅ CDF	0.34	0.07	×0.05	0.017	
	2,3,4,7,8-P ₅ CDF	N.D.	0.07	×0.5	0.018	
多氯	1,2,3,4,7,8-H ₆ CDF	0.31	0.05	×0.1	0.031	
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	N.D.	0.04	×0.1	0.0020	
苯并	2,3,4,6,7,8-H ₆ CDF	0.050	0.04	×0.1	0.0050	
呋喃	1,2,3,7,8,9-H ₆ CDF	N.D.	0.06	×0.1	0.0030	
	1,2,3,4,6,7,8-H ₇ CDF	0.77	0.06	×0.01	0.0077	
	1,2,3,4,7,8,9-H ₇ CDF	N.D.	0.07	×0.01	0.00035	
	O ₈ CDF	0.39	0.1	×0.001	0.00039	
Σ	二噁英类总量 (PCDDs+PCDFs)	23	-	-	0.21	

- 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
- 4. 当实测质量浓度低于检出限时用 "N.D." 表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限 计算。

表 1.6 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2306027-0612-S-5-1	样品名称	RBS23060	48-0609-S-5-
	样品性状	无色透明	样品量(L)	2.0 毒性当量 (TEQ) 质量浓度	
	二噁英类	实测质量浓度 (ps)	检出限 (ρ _{DL})		
		pg/L	pg/L	TEF	pg/L
t e	2,3,7,8-T ₄ CDD	N.D.	0.1	×1	0.050
多氯	1,2,3,7,8-P ₅ CDD	N.D.	0.1	×0.5	0.025
代三	1,2,3,4,7,8-H ₆ CDD	0.12	0.06	×0.1	0.012
举 并	1,2,3,6,7,8-H ₆ CDD	N.D.	0.06	×0.1	0.0030
对	1,2,3,7,8,9-H ₆ CDD	N.D.	0.06	×0.1	0.0030
多氯代二苯并-对-二噁英	1,2,3,4,6,7,8-H ₇ CDD	1.1	0.08	×0.01	0.011
	O ₈ CDD	74	0.3	×0.001	0.074
	2,3,7,8-T ₄ CDF	0.25	0.1	×0.1	0.025
	1,2,3,7,8-P ₅ CDF	0.23	0.07	×0.05	0.012
	2,3,4,7,8-P ₅ CDF	N.D.	0.07	×0.5	0.018
多氯	1,2,3,4,7,8-H ₆ CDF	0.50	0.05	×0.1	0.050
代二	1,2,3,6,7,8-H ₆ CDF	0.28	0.05	×0.1	0.028
苯并	2,3,4,6,7,8-H ₆ CDF	0.35	0.05	×0.1	0.035
多氯代二苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.18	0.07	×0.1	0.018
14	1,2,3,4,6,7,8-H ₇ CDF	1.8	0.05	×0.01	0.018
	1,2,3,4,7,8,9-H ₇ CDF	0.090	0.07	×0.01	0.00090
	O ₈ CDF	1.4	0.1	×0.001	0.0014
Σ	二噁英类总量 (PCDDs+PCDFs)	80	-	~	0.38

- 注: 1. 实测质量浓度(ps): 二噁英类质量浓度测定值 (pg/L)。
 - 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
 - 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(pg/L)。
 - 4. 当实测质量浓度低于检出限时用 "N.D." 表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

APPROVALDATE

检测报告

TEST REPORT

报告编号 REPORTNO.	RBSH2312030	
项目名称 NAME OF SAMPLE	土壤二噁英类检测	
委托单位 CUSTOMER	浙江瑞博思检测科技有限公司	
报告编制日期_	2023年12月14日	8

湖州瑞博思检测科技有限公司

Huzhou Ruibosi Testing Technology Co., Ltd.

RBSH2312030

共2页第1页

检测信息

项目名称	土壤二噁英类检测		检测类别	委托检测 (送样)
委托单位	浙江瑞博思检测科技有限公司		委托日期	2023.12.08
委托单位	杭州西	万湖区三墩镇金蓬街 366 号青蓝科	样品类别	土壌
地址		创园 D 座 2 号楼西门 505	杆帕头剂	土壌
到样日期		2023.12.08	样品数量	4 个
样品来源		丽水旺能环保能	原有限公司	
分析地点	浙江省	省湖州市龙溪街道环山路 899 号 D		2022 12 00 2022 12 12
分析地点	座2楼		分析日期	2023.12.08~2023.12.13
	序号 仪器型号			仪器编号
	1 ME104E 万分之一天平			A54
	2 IKA-RV3 旋转蒸发仪			A31
	3 SHZ-DIII循环水式多用真空泵			A45
	4 IKA-RV3 旋转蒸发仪			A32
检测仪器	5	SHZ-DIII循环水式多用真空	至泵	A46
及编号 6 YP10		YP1002N 电子天平	P1002N 电子天平	
	7	UC-23 智能静音超声波清洗机		A39
	8	MTN-2800W 氮吹仪		A37
	9	赛默飞 DFS 高分辨双聚焦磁式质谱仪		A55
	10	HPFE 06 加速溶剂萃取仪		A53
	11	SJIA-10N-60A 冷冻干燥材	A68	

RBSH2312030

共2页第2页

一、检测依据: 见表 1。

表 1 检测依据

序号	项目	检测依据及标准号
	二噁英类	土壤和沉积物 二噁英类的测定
1	一带央矢	同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.4-2009

二、检测结果: 土壤二噁英类检测结果见表 2。

表 2 土壤二噁英类检测结果

样品编号	样品名称	样品性状	二噁英类总毒性当量 (TEQ)质量浓度 (ng/kg)	
RBSH2312030-1208-T-1-1	RBS2312024-1205-T-1-1	棕黄色砂壤土	1.5	
RBSH2312030-1208-T-2-1	RBS2312024-1205-T-2-1	棕黄色砂壤土	1.9	
RBSH2312030-1208-T-3-1	RBS2312024-1205-T-3-1	棕黄色砂壤土	1.7	
RBSH2312030-1208-T-4-1	RBS2312024-1205-T-4-1	棕黄色砂壤土	0.94	

报告编制: 吴灵伟 审核: 木がわれ 批准人: (早心らびら) 批准人职务: [元元] 批准日期: 2025.12、14

以下空白

附件一: 二噁英类异构体检测数据和计算结果, 见表 1.1~表 1.5。

附件一:

表 1.1 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2312030-1208-T-1-1	样品名称	RBS2312024	4-1205-T-1-1
	取样量 (g) 10.0135		水分 (%)	3.3	
	样品性状		棕黄色砂壤土		
	HPG +14-344	实测质量浓度 (w)	检出限 (WDL)	毒性当量(TI	EQ)质量浓度
	二噁英类	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.050	0.02	×1	0.050
多氯	1,2,3,7,8-P ₅ CDD	0.19	0.03	×0.5	0.095
多氯代二苯并-对-二噁英	1,2,3,4,7,8-H ₆ CDD	0.24	0.03	×0.1	0.024
苯并-	1,2,3,6,7,8-H ₆ CDD	0.35	0.03	×0.1	0.035
对二	1,2,3,7,8,9-H ₆ CDD	0.62	0.03	×0.1	0.062
噁英	1,2,3,4,6,7,8-H ₇ CDD	11	0.03	×0.01	0.11
	O ₈ CDD	8.8×10 ²	0.04	×0.001	0.88
	2,3,7,8-T ₄ CDF	0.15	0.02	×0.1	0.015
	1,2,3,7,8-P ₅ CDF	0.20	0.02	×0.05	0.010
多	2,3,4,7,8-P ₅ CDF	0.24	0.02	×0.5	0.12
氯	1,2,3,4,7,8-H ₆ CDF	0.36	0.02	×0.1	0.036
代二	1,2,3,6,7,8-H ₆ CDF	0.26	0.02	×0.1	0.026
苯并	2,3,4,6,7,8-H ₆ CDF	0.32	0.02	×0.1	0.032
呋	1,2,3,7,8,9-H ₆ CDF	0.22	0.02	×0.1	0.022
喃	1,2,3,4,6,7,8-H ₇ CDF	0.89	0.01	×0.01	0.0089
	1,2,3,4,7,8,9-H ₇ CDF	0.30	0.01	×0.01	0.0030
	O ₈ CDF	0.91	0.02	×0.001	0.00091
Σ	二噁英类总量 (PCDDs+PCDFs)	9.0×10 ²	-	-	1.5

注: 1. 实测质量浓度(w): 二噁英类质量浓度测定值(ng/kg)。

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I- TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.2 二噁英类异构体检测数据和计算结果

		表 1.2 二噁英类异构体检测]数据和计算结果	:	
	样品编号	RBSH2312030-1208-T-2-1	样品名称	RBS231202	4-1205-T-2-1
	取样量 (g)	10.0006	水分 (%)	3.7	
	样品性状		棕黄色砂壤土		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
	一带央关	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.027	0.01	×1	0.027
多氯	1,2,3,7,8-P ₅ CDD	0.087	0.02	×0.5	0.044
代二	1,2,3,4,7,8-H ₆ CDD	0.14	0.02	×0.1	0.014
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.45	0.02	×0.1	0.045
对	1,2,3,7,8,9-H ₆ CDD	0.60	0.02	×0.1	0.060
噁英	1,2,3,4,6,7,8-H ₇ CDD	15	0.03	×0.01	0.15
	O ₈ CDD	1.4×10 ³	0.04	×0.001	1.4
	2,3,7,8-T ₄ CDF	0.22	0.02	×0.1	0.022
	1,2,3,7,8-P₅CDF	0.19	0.02	×0.05	0.0095
多	2,3,4,7,8-P ₅ CDF	0.14	0.02	×0.5	0.070
氯	1,2,3,4,7,8-H ₆ CDF	0.28	0.01	×0.1	0.028
代二	1,2,3,6,7,8-H ₆ CDF	0.21	0.01	×0.1	0.021
苯并	2,3,4,6,7,8-H ₆ CDF	0.20	0.01	×0.1	0.020
开 呋	1,2,3,7,8,9-H ₆ CDF	0.039	0.01	×0.1	0.0039
喃	1,2,3,4,6,7,8-H ₇ CDF	0.78	0.006	×0.01	0.0078
	1,2,3,4,7,8,9-H ₇ CDF	0.15	0.007	×0.01	0.0015
	O ₈ CDF	0.59	0.009	×0.001	0.00059
Σ	二噁英类总量 (PCDDs+PCDFs)	1.4×10 ³			1.9

注: 1. 实测质量浓度(w): 二噁英类质量浓度测定值(ng/kg)。

^{2.} 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.3 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2312030-1208-T-3-1	样品名称	RBS231202	4-1205-T-3-1
	取样量 (g)	10.0089	水分 (%)	3.9	
	样品性状		棕黄色砂壤土		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
	一唿头矢	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	N.D.	0.01	×1	0.0050
多氯	1,2,3,7,8-P ₅ CDD	0.056	0.02	×0.5	0.028
代二	1,2,3,4,7,8-H ₆ CDD	0.16	0.02	×0.1	0.016
多氯代二苯并-对-二噁英	1,2,3,6,7,8-H ₆ CDD	0.26	0.02	×0.1	0.026
对二	1,2,3,7,8,9-H ₆ CDD	0.40	0.02	×0.1	0.040
噁英	1,2,3,4,6,7,8-H ₇ CDD	12	0.04	×0.01	0.12
	O ₈ CDD	1.3×10 ³	0.04	×0.001	1.3
	2,3,7,8-T ₄ CDF	0.32	0.02	×0.1	0.032
	1,2,3,7,8-P₅CDF	0.25	0.02	×0.05	0.012
多	2,3,4,7,8-P ₅ CDF	0.17	0.02	×0.5	0.085
更	1,2,3,4,7,8-H ₆ CDF	0.27	0.01	×0.1	0.027
	1,2,3,6,7,8-H ₆ CDF	0.15	0.01	×0.1	0.015
 卡	2,3,4,6,7,8-H ₆ CDF	0.17	0.01	×0.1	0.017
夫	1,2,3,7,8,9-H ₆ CDF	0.042	0.01	×0.1	0.0042
喃	1,2,3,4,6,7,8-H ₇ CDF	1.0	0.007	×0.01	0.010
	1,2,3,4,7,8,9-H ₇ CDF	0.15	0.008	×0.01	0.0015
	O ₈ CDF	2.0	0.01	×0.001	0.0020
Σ (二噁英类总量 (PCDDs+PCDFs)	1.3×10³	-		1.7

注: 1. 实测质量浓度(w): 二噁英类质量浓度测定值(ng/kg)。

- 2. 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。
- 3. 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

表 1.4 二噁英类异构体检测数据和计算结果

	样品编号	RBSH2312030-1208-T-4-1	样品名称	RBS231202	4-1205-T-4-1
	取样量 (g)	10.0070	水分 (%)	4.2	
	样品性状		棕黄色砂壤土		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
	一念关关	ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.010	0.01	×1	0.010
多氯	1,2,3,7,8-P ₅ CDD	0.12	0.03	×0.5	0.060
多氯代二苯并-对-二噁英	1,2,3,4,7,8-H ₆ CDD	0.20	0.02	×0.1	0.020
苯并-	1,2,3,6,7,8-H ₆ CDD	0.32	0.02	×0.1	0.032
对	1,2,3,7,8,9-H ₆ CDD	0.43	0.02	×0.1	0.043
噁英	1,2,3,4,6,7,8-H ₇ CDD	10	0.02	×0.01	0.10
	O ₈ CDD	4.1×10 ²	0.02	×0.001	0.41
	2,3,7,8-T ₄ CDF	0.20	0.02	×0.1	0.020
	1,2,3,7,8-P ₅ CDF	0.21	0.02	×0.05	0.010
多	2,3,4,7,8-P ₅ CDF	0.19	0.02	×0.5	0.095
氯	1,2,3,4,7,8-H ₆ CDF	0.29	0.01	×0.1	0.029
代二	1,2,3,6,7,8-H ₆ CDF	0.26	0.01	×0.1	0.026
苯并	2,3,4,6,7,8-H ₆ CDF	0.23	0.01	×0.1	0.023
呋	1,2,3,7,8,9-H ₆ CDF	0.023	0.02	×0.1	0.0023
喃	1,2,3,4,6,7,8-H ₇ CDF	1.2	0.007	×0.01	0.012
	1,2,3,4,7,8,9-H ₇ CDF	0.16	0.008	×0.01	0.0016
	O ₈ CDF	1.7	0.009	×0.001	0.0017
Σ	二噁英类总量 PCDDs+PCDFs)	4.3×10 ²	-	-	0.90

- 注: 1. 实测质量浓度(w): 二噁英类质量浓度测定值(ng/kg)。
 - 2. 毒性当量因子(TEF): 采用国际毒性当量因子 I- TEF 定义。
 - 3. 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号	表 1.5 二噁英类异构体检测 RBSH2312030-1208-T-4-1,	样品名称		4-1205-T-4-1
-	200 8008200000		303 3030300000		
-	取样量 (g)	10.0092	水分 (%)	4.2	
	样品性状		棕黄色砂壤土		
	二噁英类	实测质量浓度 (w)	检出限 (WDL)	毒性当量(T	EQ)质量浓度
		ng/kg	ng/kg	TEF	ng /kg
	2,3,7,8-T ₄ CDD	0.027	0.01	×1	0.027
多氯	1,2,3,7,8-P ₅ CDD	0.11	0.02	×0.5	0.055
代二	1,2,3,4,7,8-H ₆ CDD	0.18	0.02	×0.1	0.018
苯并-	1,2,3,6,7,8-H ₆ CDD	0.43	0.02	×0.1	0.043
多氯代二苯并-对-二噁英	1,2,3,7,8,9-H ₆ CDD	0.47	0.02	×0.1	0.047
噁英	1,2,3,4,6,7,8-H ₇ CDD	9.6	0.02	×0.01	0.096
	O ₈ CDD	4.2×10 ²	0.03	×0.001	0.42
	2,3,7,8-T ₄ CDF	0.18	0.02	×0.1	0.018
	1,2,3,7,8-P ₅ CDF	0.17	0.02	×0.05	0.0085
多	2,3,4,7,8-P ₅ CDF	0.31	0.02	×0.5	0.16
氯	1,2,3,4,7,8-H ₆ CDF	0.25	0.01	×0.1	0.025
代二	1,2,3,6,7,8-H ₆ CDF	0.26	0.01	×0.1	0.026
苯并	2,3,4,6,7,8-H ₆ CDF	0.23	0.01	×0.1	0.023
呋	1,2,3,7,8,9-H ₆ CDF	0.029	0.02	×0.1	0.0029
喃	1,2,3,4,6,7,8-H ₇ CDF	1.3	0.007	×0.01	0.013
	1,2,3,4,7,8,9-H ₇ CDF	0.18	0.009	×0.01	0.0018
	O ₈ CDF	1.8	0.01	×0.001	0.0018
Σ	二噁英类总量 (PCDDs+PCDFs)	4.4×10²	-	-	0.99

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I- TEF 定义。

^{3.} 当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检 出限计算。

附件 10 质控报告

丽水旺能环保能源有限公司 土壤和地下水自行检测 **质 控 报 告**

编	制:	
审	核:	
批	准:	

 委托单位:
 丽水旺能环保能源有限公司

 检测单位:
 浙江瑞博思检测科技有限公司

 编制时间:
 2022年11月

项目名称: 丽水旺能环保能源有限公司土壤和地下水自行检测

项目负责人:徐袁俊

采样负责人: 俞兴刚

检测负责人:范浙英

质控负责人:李静

报告审核:俞兴刚

报告签发人:傅程玲

项目参与人员:董卓杰、吴长满、赖柳燕、郭云晓、张嶒、邓弯弯、谢绍楠、沈俐

倩、葛玉洁、宋育博、徐凯、王亚雄、王璐瑶、林巴达、钟丽娜等

目 录

→,	项目概况
二,	采样及现场检测质量控制
2.1	现场采样依据3
2.2	现场采样及检测质量控制
2.3	部分采样照片
三、	样品保存、运输和流转8
3.1	样品保存质量控制
3.2	样品运输质量控制10
3.3	样品流转质量控制10
四、	实验室检测分析11
4.1	检测方法的确认11
4.2	样品制备及前处理13
4.3	样品制备的质量控制16
4.4	检测分析质量控制16
4.5	实验室设备图集18
五、	实验室内部质量控制结果分析与统计21
5.1	使用标准物质或质控样品测试21
5.2	加标回收率试验26
5.3	平行样测定36
5.4	空白样品试验37
六、	质控结论41

一、项目概况

本项目中的地下水、土壤样品采集、现场分析和实验室分析工作由浙江瑞博思检测科技有限公司承担。检测项目、采样点位及采样时间见表1-1,检测时间: 2022年10月24日~2022年11月04日。

检测项目见下表 1-1。

表 1-1 检测项目汇总表

类别	点位	检测项目	采样时间 及频次
	1#: W1 2#: W2 3#: W3 4#: W4 5#: W0	色度(25度)、嗅和味(无,无单位)、浑浊度(10NTU)、肉眼可见物(无,无单位)、pH(5.5≤pH<6.5,8.5 <ph≤9.0)、总硬度(650)、溶解性总固体(2000)、硫酸盐(350)、氯化物(350)、铁(2.0)、锰(1.50)、铜(1.50)、锌(5.00)、铝(0.50)、挥发酚(0.01)、阴离子表面活性剂(0.3)、转氧量(10.0)、氨氮(1.50)、硫化物(0.10)、钠(400)、亚硝酸盐氮(4.80)、硝酸盐(以氮计)(30.0)、氰化物(0.1)、氟化物(2.0)、汞(0.002)、砷(0.05)、硒(0.1)、铜(0.01)、六价铬(0.10)、铝(0.10)、三氮甲烷(300μg)<="")、二噁英类(="")、铍(0.06)、锑(0.01)、钴(0.10)、铊(0.001)、镍(="")、铬(="")、高大肠菌群(100mpn="" 100ml)、菌落总数(1000cfu="" 100ml或cfu="" l)、四氮化碳(50.0μg="" l)、总磷(="" l)、甲苯(1400μg="" l)、苯(120μg="" ml)、碘化物(0.50)、石油烃(c10~c40)(="" td=""><td>J J 表 10.26 日 景采样 1 次</td></ph≤9.0)、总硬度(650)、溶解性总固体(2000)、硫酸盐(350)、氯化物(350)、铁(2.0)、锰(1.50)、铜(1.50)、锌(5.00)、铝(0.50)、挥发酚(0.01)、阴离子表面活性剂(0.3)、转氧量(10.0)、氨氮(1.50)、硫化物(0.10)、钠(400)、亚硝酸盐氮(4.80)、硝酸盐(以氮计)(30.0)、氰化物(0.1)、氟化物(2.0)、汞(0.002)、砷(0.05)、硒(0.1)、铜(0.01)、六价铬(0.10)、铝(0.10)、三氮甲烷(300μg>	J J 表 10.26 日 景采样 1 次
	2、括号内 的类标准IV 3、碘化物、 4、二噁英	. 石油烃分包杭州希科检测技术有限公司,资质证书编号: 171120110457。 类分包"湖州瑞博思检测科技有限公司",资质证书编号为: 201112052645。	8-2017)中
土壌	6#: S1 7#: S2 8#: S3 9#: S4 10#: S0 11#: B1	pH值 (/, 无量纲)、砷 (60)、镉 (65)、六价铬 (5.7)、铜 (18000)、铝 (800)、汞 (38)、镍 (900)、挥发性有机物(四氯化碳 (2.8)、氯仿 (0.9)、氯甲烷 (37)、1,1-二氯乙烷 (9)、1,2-二氯乙烷 (5)、1,1-二氯乙烷 (66)、顺式-1,2-二氯乙烯 (596)、反式-1,2-二氯乙烯 (54)、二氯甲烷 (616)、1,2-二氯丙烷 (5)、1,1,1,2-四氯乙烷 (10)、1,1,2,2-四氯乙烷 (6.8)、四氯乙烯 (53)、1,1,1-三氯乙烷 (840)、1,1,2-三氯乙烷 (2.8)、三氯乙烯 (2.8)、1,2,3-三氯丙烷 (0.5)、氯乙烯 (0.43)、苯 (4)、氯苯 (270)、1,2-二氯苯 (560)、1,4-二氯苯 (20)、乙苯 (28)、苯乙烯 (1290)、甲苯 (1200)、间,对-二甲苯 (570)、邻-二甲苯 (640))、半挥发性有机物(硝基苯 (76)、苯胺 (260)、2-氯苯酚 (2256)、苯并[a]	710.24日采 59 [±] 点1次; 10.25日采 6 [±] 、7 [±] 、 10 [±] 点 1 5次; 10.26 5日采 8 [±] 、 11 [±] 、 112 [±] 、 113 [±] 、 14 [±] 141 141
	1026-T-8-1- 1) 、RBS2 1025-T-10 2、10 [#] 、11	现场平行样: RBS2210020-1024-T-9-1-XP、RBS2210020-1025-T-10-1-XP、RE-XP; 全程序空白样: RBS2210020-1024-T-9 (全空1)、RBS2210020-1025-T-210020-1026-T-8 (全空1); 运输空白样: RBS2210020-1024-T-9 (运空1)、RE(运空1)、RBS2210020-1026-T-8 (运空1)。(运空1)、RBS2210020-1026-T-8 (运空1)。 1 - 1 - 1 - 4 - 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点	-10(全空 3S2210020- a附近50cm

1

(PID快筛)、底层采集3个样;8[#]点位钻探深度5.6m,分别在在土壤层0-0.5m、水位线附近50cm (PID快筛)、底层采集3个样;9[#]点位钻探深度4m,分别在在土壤层0-0.5m、水位线附近50cm (PID 快筛)、底层采集3个样。

3、括号内为参照标准,单位mg/kg,执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB 36600-2018)中的第二类用地的风险筛选值要求。 4、二噁英类分包"湖州瑞博思检测科技有限公司",资质证书编号为: 201112052645。

二、采样及现场检测质量控制

2.1 现场采样依据

现场采样依据见表2-1。

表2-1 现场采样依据

序号	类别	依据
1	1 地下水	《地下水环境监测技术规范》(HJ/T 164-2004)
1		《浙江省环境监测质量保证技术规定》(第三版 试行)
2	土壤 《土壤环境监测技术规范》HJ/T 166-2004	

2.2 现场采样及检测质量控制

1、采样及现场检测前准备

根据前期对本项目的调查及现场踏勘,按照RBS2210020采样方案,由现场采样部负责人安排现场采样人员、采样用车、合适的采样工具及设备、固定剂、个人防护用品等,明确工作组人员任务分工和质量考核要求。

项目负责人徐袁俊具备5年以上采样工作经验的专业技术人员,所有采样人员均为具有环境相 关专业知识,熟悉采样流程和操作规范,掌握地下水、土壤等采样的相关技术规定和质量管理要求,掌握相关设备操作方法,经过现场采样和检测的专业培训,并经公司考核合格,持证上岗。

制定采样人员安全和健康防护计划,严格执行现场设备操作规范,按要求使用个人防护装备。减少挥发性有机物的吸入和摄入,避免皮肤与污染土壤的直接接触。同一采样点有两人或以上进行采样,注意采样安全,采样过程要相互监护,防止中毒等意外事故的发生。

2、样品采集

(1) 地下水

采用贝勒管按照采样方案对W1、W2、W3、W4、W0点位进行水样采集,同时采集现场平行样和全程序空白样品。采集好的水样加入固定剂后,放入样品箱,冷藏保存,当天送回实验室检测。

为了保证样品时效性,地下水的pH现场测定。pH值测定前采用标准缓冲溶液对仪器进行校准,测定过程中采用平行样的方式对pH指标进行质量控制,质量控制结果详见第五章。

微生物水样采集,保证采样瓶全过程无细菌污染,采样瓶不能用水样冲洗。

(2) 土壤

根据采样方案和现场实际情况进行采样,确保样品的代表性、有效性和完整性。在样品采集之前进行点位确认,记录 GPS 信息,并做好标记。

优先采集用于测定挥发性有机物的土壤样品,其次是半挥发性有机物样品,然后是重

金属分析样品。检测挥发性有机物指标的土壤样品使用非扰动采样器采集土壤,推入40ml样品瓶内。检测含水率、半挥发性有机物等指标的土壤,用铁铲将土壤转移至棕色广口瓶内并装满填实。用于检测重金属指标的土壤样品采用木铲工具取样,将土壤转移至样品袋内。采样过程中剔除石块等杂质,保证采样瓶口清洁,样品袋密封良好。样品采样完成后,样品瓶和样品袋放入样品箱,冷藏保存,当天送回实验室检测。

采样前后对采样器进行除污和清洗,在样品采集过程中使用一次性防护手套,严禁用 手直接采集土样,不同土壤样品采集需更换手套,避免交叉污染。

土壤采样前清除地表堆积腐蚀质等堆积物,详细记录土样土质、颜色、生物状况、植被及耕作情况等性状。

平行样、空白样的要求: 土壤平行样不低于地块总样品数的10%。平行样在土样同一位置采集,两者检测项目和检测方法一致,在采样记录单中标注平行样编号及对应的土壤样品编号。

采集土壤样品同时做运输空白和全程序空白。

(全程序空白)每批次样品采集全程序空白样。采样前在实验室将一份空白试剂水放入样品瓶中密封,将其带到采样现场。与采样的样品瓶同时开盖或密封,之后随样品运回实验室,按与样品相同的操作步骤进行试验,用于检查从样品采集到分析全过程是否受到污染。

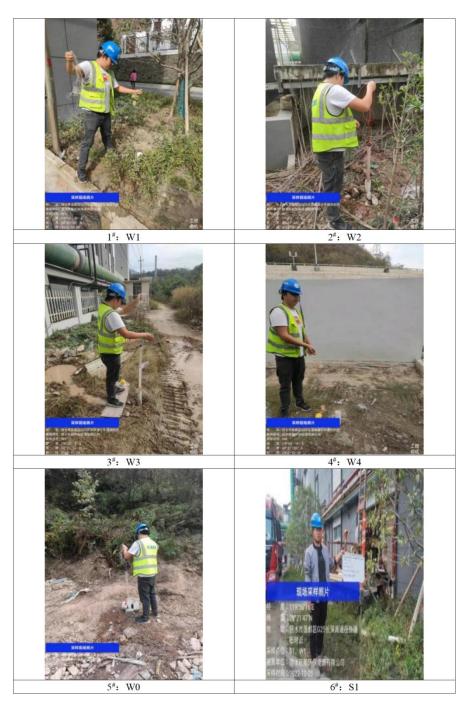
(运输空白)每批次样品采集运输空白样。采样前在实验室将一份空白试剂水放入样品瓶中密封,将其带到采样现场。采样时不开封,之后随样品运回实验室,按与样品相同的操作步骤进行试验,用于检查样品运输过程中是否收到污染。

3、样品唯一性标识

按照公司《样品管理程序》中的编码规则确定样品唯一标识,确保样品在流转过程中自始至终不会发生混淆。

4、原始记录

现场及时填写采样记录和检测记录,确保记录的原始性和可溯源性。


5、小组自查

每个点采样结束后及时进行样品检查,检查内容包括:采样位置、样品量、样品标识、 样品防污措施,记录完整性等。

每天结束工作前进行项目检查,检查内容包括: 当天采集样品的数量、检查样品标签以及记录的一致性。对自查中发现的问题及时进行更正或补救,确保所采集的样品具有代表性和有效性。

2.3 部分采样照片

4

三、样品保存、运输和流转

样品的保存、运输和流转按照表3-1相关标准执行。

表3-1 样品保存、运输和流转执行标准

序号	类别	依据
1	地下水	《地下水环境监测技术规范》(HJ/T 164-2004) 《浙江省环境监测质量保证技术规定》(第三版 试行)
2	土壤	《土壤环境监测技术规范》HJ/T 166-2004

3.1 样品保存质量控制

样品采集完成后,根据各检测项目要求,进行样品冷藏或加入固定剂、避光等处理,地下水 具体要求详见表3-1, 土壤具体要求详见表3-2。

表3-1 地下水保存要求

序号	检测项目	样品保存及有效期	是否符合要求
1	pH值	P, 2h, 样品充满容器并密封	符合
2	色度	G或P,12h	符合
3	臭和味	G, 6h	符合
4	浑浊度	G或P,12h	符合
5	肉眼可见物	G, 12h	符合
6	总硬度	G或P, 冷藏避光, 24h (加硝酸, pH<2, 冷藏避光, 30d)	符合
7	溶解性总固体	P或G,冷藏24h	符合
8	硫酸盐、氯化物	P或G,冷藏避光,抽气过滤30d	符合
9	硝酸盐(以N计)	P或G,冷藏避光,抽气过滤7d	符合
10	氟化物	P, 冷藏避光, 抽气过滤14d	符合
11	亚硝酸盐氮	G或P,冷藏避光24h	符合
12	挥发酚	G, 加磷酸pH≈4, 加入1%硫酸铜, 冷藏24h	符合
13	阴离子表面活性剂	甲醇清洗过的玻璃瓶,加1%(体积比)的甲醛溶液(40%(体积比)),4d;加氯仿使水样饱和,8d	符合
14	耗氧量	G, 1L水样加0.8mL浓硫酸,冷藏24h	符合
15	氨氮	P或G,加GR硫酸pH<2,冷藏7d	符合
16	硫化物	棕色具塞磨口玻璃瓶,1L水样加氢氧化钠至pH≈9,加入 5%抗坏血酸5mL,饱和EDTA3mL,滴加饱和Zn(AC)2至胶 体产生,24h	符合
17	氰化物	P或G,采样前用水样清洗采样瓶三次,IL水样加0.5g氢氧化钠,使pH>12,避光冷藏24h	符合

18	铁、锰、铜、锌、 镉、铅、铬、铊、 镍、铍	P, 1L水样加10mL硝酸,采集样品后立即用0.45μm滤膜过滤,弃去前50ml滤液,14d	符合
19	铝、钴	P, 加硝酸, pH<2, 采集样品后立即用0.45μm滤膜过滤, 弃去前50ml滤液, 14d	符合
21	六价铬	G,加氢氧化钠使pH=8~9,14d	符合
21	汞	P或G, 水样中性, 1L水样加5mLGR盐酸, 采集样品后立即用0.45μm滤膜过滤, 弃去前50ml滤液, 14d	符合
22	砷、硒、锑	P或G, 1L水样加2mLGR盐酸,采集样品后立即用0.45μm 滤膜过滤,弃去前50ml滤液,14d	符合
23	苯、甲苯、三氯甲 烷、四氯化碳	40ml棕色玻璃瓶,采样前每40mL样品加入25mg抗坏血酸(若水样含总余氯,则总余氯每超过5mg/L,需多加25mg 抗坏血酸);采样时,水样呈中性时,样品瓶中加 0.5mL1+1盐酸,水样碱性时加入1+1盐酸,使样品pH≤2, 水样采采样瓶中溢流不留空间。	符合
24	总大肠菌群	微生物专用采样袋,优先采集此指标,<10℃,4h	符合
25	菌落总数	微生物专用采样袋,优先采集此指标,<10℃,4h	符合
26	钠	P, 1L水样加10mL硝酸,采集样品后立即用0.45μm滤膜过滤,弃去前50ml滤液,14d	符合
27	总磷	P或G,加GR硫酸至pH<2; 24h	符合

注: G 为硬质玻璃瓶; P 为聚乙烯瓶(桶)。

表3-2 土壤保存要求

序号	检测项目	样品保存及有效期	是否符合要 求
1	pH值	密封塑料袋或玻璃瓶,密封,尽快	符合
2	汞	玻璃瓶,冷藏28d	符合
3	砷、锑	密封塑料袋或玻璃瓶,冷藏180d	符合
4	镉、铜、镍、铅、 钴、锰	密封塑料袋或玻璃瓶,冷藏,180d	符合
5	铊	密封塑料袋或玻璃瓶,冷藏, 180d	符合
6	六价铬	密封塑料袋或玻璃瓶,冷藏鲜样1d; 干样研磨后尽快	符合
7	挥发性有机物	40mL棕色玻璃瓶,冷藏避光,7d	符合
8	半挥发性有机物	具塞磨口棕色玻璃瓶,装满瓶子,冷藏避光,10d	符合
9	苯胺(半挥发性有 机物)	具塞磨口棕色玻璃瓶,装满瓶子,冷藏避光,10d	符合
10	石油烃 (C ₁₀ -C ₄₀)	具塞磨口棕色玻璃瓶,装满瓶子,冷藏避光,14d	符合
11	水溶性氟化物	密封塑料袋,冷藏,14d	符合

3.2 样品运输质量控制

样品采集完成后,由专用车辆送至实验室,样品运输过程中的质量控制包括:

- (1) 样品装运前,检查容器外(内)盖盖紧,核对采样标签、样品数量、采样记录等信息,核对无误后方可装车;
- (2) 玻璃容器装箱时采取分离措施,以防破损,填入缓冲材料,防震,样品置于样品箱内密封保存,运输途中严防样品损失、混淆和沾污;
- (3) 认真填写样品交接记录,写明采样人、采样时间、样品名称、样品性状、检测项目等信息:
 - (4) 样品运抵实验室后及时核对样品,核对无误后由样品管理员将样品保存至冰箱内。

3.3 样品流转质量控制

(1) 装运前核对

样品流转运输保证样品完好并低温保存,采用适当的减振隔离措施,严防样品瓶的破损、混淆和沾污,及时送至实验室分析。

由现场采样人员负责样品装运前的核对,对样品与采样记录单进行逐个核对,按照样品保存要求进行样品保存质量检查,检查无误后分类装箱。样品运输前将容器的外(内)盖盖紧。样品装箱过程中采取一定的隔离措施,以防破损,用泡沫材料填充样品瓶和样品箱内之间空隙。

(2) 样品运输

样品流转运输保证样品安全和及时送达,本项目选用配备专用样品箱将样品送至实验室,同时确保样品在保存时限内能尽快运送至实验室。保证样品运输过程中低温和避光条件,避免样品在运输和流转过程中损失、污染、变质(变性)或混淆,防止盛样容器破损、混淆或沾污。

(3) 样品接收

样品送达实验室后,由样品管理员进行接收。样品管理员接样时检查样品箱是否破损,按 照样品交接单清点核实样品数量、样品编号以及破损情况,对样品进行符合性检查,确认无误 后双方在样品交接记录上签字确认。

(4) 样品流转

样品管理员认真填写样品流转记录,检测人员领样后对样品符合性及数量进行确认,确认 无误后在领样栏签名,进行检测。

四、实验室检测分析

4.1 检测方法的确认

4-1 地下水检测方法和主要检测仪器一览表

序号	检测项目	检测分析方法及标准号	设备仪器及编号
1	pH值	水质 pH值的测定 电极法 HJ 1147-2020	PHB-5 便携式pH计(B76)
2	色度	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006	1
3	臭和味	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006	DK-98-Ⅱ 电炉(两联)(A35)
4	浑浊度	生活饮用水标准检验方法 感官性状和物理指标 GB/T 5750.4-2006	TL2300EPA 浊度计(A20)
5	肉眼可见物	生活饮用水标准检验方法 感官性状 和物理指标 GB/T 5750.4-2006	1
6	总硬度	水质 钙和镁总量的测定 EDTA滴定法 GB/T 7477-1987	Ţ
7	溶解性总固体	生活饮用水标准检验方法感官性状和物理指标 GB/T 5750.4-2006	梅特勒ME204E 电子天平(A57)、 HHS-6 数显恒温水浴锅(A103)、 GZX9140MBE电热鼓风干燥箱 (A17)
8	硫酸盐、氯化 物、硝酸盐(以N 计)、氟化物	水质 无机阴离子 (F'、Cl'、NO ₂ -、Br、NO ₃ -、PO ₄ ³⁻ 、SO ₃ ²⁻ 、SO ₄ ²⁻) 的测定 离子色谱法 HJ 84-2016	MetrohmECO-IC 离子色谱仪(A03)
9	亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	V2200 可见分光光度计(A34)
10	挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 503-2009	V2200 可见分光光度计(A34)、 YDL-HP06 全自动蒸馏仪(A99)
11	阴离子表面活性 剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 7494-1987	V2200 可见分光光度计(A34)
12	耗氧量	生活饮用水标准检验方法 有机物综合指标 GB/T 5750.7-2006	HHS-6 数显恒温水浴锅(A103)
13	氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	V2200 可见分光光度计(A34)
14	硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021	752 紫外可见分光光度计(A92)、 YDL-HP06 全自动蒸馏仪(A99)
15	氰化物	水质 氰化物的测定 容量法和分光光度法 HJ 484-2009	V2200 可见分光光度计(A34)、 YDL-HP06 全自动蒸馏仪(A99)

16	铁、锰、铜、 锌、铝、镉、 铅、钴、铬、 铊、镍、铍	水质 65种元素的测定 电感耦合等离子体质谱法 HJ 700-2014	7800 等离子体质谱仪(ICP-MS) (A97)
17	六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987	752紫外可见分光光度计(A92)
18	汞、砷、硒、锑	水质 汞、砷、硒、铋和锑的测定原子荧光法 HJ 694-2014	AFS-8520 原子荧光光度计(A05)
19	苯、甲苯、三氯 甲烷、四氯化碳	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012	8860, 5977B 气相色谱和质谱联用仪 (A76)、PTC-III 吹扫捕集仪(A77)
20	总大肠菌群	总大肠菌群 生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006	XSP-16A 生物显微镜(A63)、 JA1003 电子天平(A64)、DK-S26电 热恒温水浴锅(A67)、DNP-9052 电 热恒温培养箱(A68)、LS-35LD 立式 压力蒸汽灭菌器(A100)
21	菌落总数	生活饮用水标准检验方法 微生物指标 GB/T 5750.12-2006	JA1003 电子天平(A64)、DK-S26电 热恒温水浴锅(A67)、DNP-9052 电 热恒温培养箱(A68)、LS-35LD 立式 压力蒸汽灭菌器(A100)、XK-97A 菌落计数器(A74)
23	钠	水质 32种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015	5110 电感耦合等离子体光谱仪(ICP) (A02)
24	总磷	水质 总磷的测定 钼酸铵分光光度法 GB/T 11893-1989	V2200 可见分光光度计(A34)、 DSX-18L 手提式高压蒸汽灭菌器 (A71)

4-2 土壤检测方法和主要检测仪器一览表

序号	检测项目	检测依据	设备仪器
1	pH	土壤 pH值的测定 电位法 HJ 962-2018	PHSJ-3F pH计(A104)、GL-3250B 磁力 搅拌器(A12)、mp5002 电子天平 (A31)
2	六价铬	土壤和沉积物 六价铬的测定 碱溶液 提取-火焰原子吸收分光光度法 HJ 1082-2019	AA6880 火焰原子吸收光谱仪(A15)、 GL-3250B 磁力搅拌器(A12)、梅特勒 ME204E 电子天平(A57)
3	镉、铜、镍、铅、 钴、锰	土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法	7800 等离子体质谱仪 (ICP-MS) (A97)、SD46-1 智能电热板

		HJ 803-2016	(A108)、梅特勒ME204E 电子天平
			(A57)
4	汞、砷、锑	土壤和沉积物汞、砷、硒、铋、锑的测 定 微波消解-原子荧光法 HJ680-2013	AFS-8520 原子荧光光度计(A05)、 YMW-HP 微波消解仪(A107)
5	铊	土壤和沉积物 铊的测定 石墨炉原子吸收分光光度法 HJ 1080-2019	石墨炉系统原子吸收光谱仪(A49)、 SD46-1 智能电热板(A108)、梅特勒 ME204E 电子天平(A57)
6	挥发性有机物	土壤和沉积物 挥发性有机物的的测 定 吹扫捕集气相色谱-质谱法 HJ 605-2011	8860, 5977B 气相色谱和质谱联用仪 (A76)、PTC-III 吹扫捕集仪(A77)
7	半挥发性有机物	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 834-2017	8860, 5977B 气相色谱和质谱联用仪 (A94)、HPFE 06 高通量加压流体萃取 仪(A90)、RE-52AA 旋转蒸发仪 (A53)、JC-WD-12 氮吹仪(A54)、 SJIA-12N-60A 真空冷冻干燥机(A96)
8	苯胺(半挥发性有 机物)	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附录K	8860, 5977B 气相色谱和质谱联用仪 (A94)、RE-52AA 旋转蒸发仪 (A53)、JC-WD-12 氮吹仪(A54)、 SJIA-12N-60A 真空冷冻干燥机(A96)
9	石油烃 (C10-C40)	土壤和沉积物 石油烃(C10-C40)的 测定 气相色谱法 HJ 1021-2019	7890B 气相色谱仪(A04)、SJIA-12N- 60A真空冷冻干燥机(A96)、HPFE 06 高通量加压流体萃取仪(A90)、RE- 52AA 旋转蒸发仪(A53)、JC-WD-12 氮 吹仪(A54)、mp5002 电子天平(A31)
10	水溶性氟化物	土壤 水溶性氟化物和总氟化物的测定 离子选择电极法 HJ 873-2017	梅特勒ME204E 电子天平(A57)、 KQ3200DE超声波清洗器(A11)、TD6M 离心机(A48)、PXSJ-216F型离子计 (A82)

4.2 样品制备及前处理

4.2.1 土壤样品制备

(1) 风干土壤样品制备

取适量新鲜土壤样品平铺在干净的搪瓷盘或玻璃板上,避免阳光直射,且环境温度不超过 40℃,自然风干,去除石块、树枝等杂质,过2mm样品筛。将>2 mm的土块粉碎后过2 mm样品筛,

混匀,待测。

(2) 新鲜土壤样品制备

取适量新鲜土壤样品撒在干净、不吸收水分的玻璃板上,充分混匀,去除直径大于2 mm的石块、树枝等杂质,待测。(注:测定样品中的微量有机污染物不能去除石块、树枝等杂质。因此,测定其干物质含量时不剔除石块、树枝等杂质。)

(3) 冻干土壤样品制备

将样品放在搪瓷盘上,混匀,除去枝棒、叶片、石子等异物,并进行四分法粗分。取适量混匀后样品,放入真空冷冻干燥机中进行干燥脱水。干燥后的样品研磨、过0.25mm孔径的筛子,均化处理成250μm(60目)左右的颗粒。

4.2.2 样品前处理方法

表 4-3 地下水样品前处理方法

序号	检测项目	前处理方法
1	阴离子表面活性 剂	取100ml样品放入250ml分液漏斗中,用25.0ml移液管吸取25.0ml亚甲蓝溶液摇匀,再加入10.0ml氯仿摇匀萃取,用10.0ml移液管吸取 10.0ml氯仿,反复萃取3次,再用5.0ml移液管吸取 5.0ml 氯仿,反复萃取3次定容至50.0ml容量瓶中。
2	硫化物	酸化-蒸馏-吸收法 量取200ml混匀的水样,迅速转移至500ml蒸馏瓶中,再加入5ml抗氧化剂溶液,轻轻摇动,加5粒玻璃珠。量取20.0ml氢氧化钠溶液于100ml吸收管中作为吸收液,插入馏出液导管至吸收液液面以下。打开冷凝水,向蒸馏瓶中迅速加入10ml盐酸溶液,立即盖紧塞子,打开温控电炉,调节到适当的加热温度。当吸收管中的溶液体积达到约60ml时,撤下蒸馏瓶,取下吸收管,停止蒸馏。用少量水冲洗馏出液导管,并入吸收液中,待测。
3	硫酸盐、氯化物、硝酸盐(以N计)、氟化物	经0.22μm滤膜过滤后进样
4	挥发酚	取250ml样品移入500ml全玻璃整流器中,加25ml水,加4粒玻璃珠防爆沸,再加入5滴甲基橙指示剂进行蒸馏。将馏出液用250ml量筒移取250ml到分液漏斗中,用2.0ml移液管移取2.0ml缓冲溶液、1.5ml 4-氨基安替比林溶液、1.5ml铁氰化钾,混匀放置10min。在上述显色分液漏斗中用10.0ml移液管移取10ml三氯甲烷,剧烈摇晃2min,静置分层。
5	氰化物	取200ml样品移入蒸馏瓶中,加4粒玻璃珠防爆沸,往接收瓶内加入10ml氢氧化钠作为吸收液。将10ml硝酸锌溶液加入蒸馏瓶中,加入7滴甲基橙指示剂,迅速加入5ml酒石酸溶液,立即盖好瓶塞,使溶液保持红色,打开冷凝水,打开蒸馏仪,加热蒸馏。接收瓶内试样体积接近100ml时,停止蒸馏,用少量水冲洗馏出液导管,取出接收瓶,用水稀释至标线,待测。

6	总大肠菌群	培养基配制及灭菌: (1) 乳糖蛋白胨 (单料): 水=23g: 1000ml 115℃灭菌 20min。 (2) 乳糖蛋白胨 (双料): 水=46g: 1000ml 115℃灭菌20min。 (3) 伊红美蓝: 水=37g: 1000ml 115℃灭菌15min。
7	菌落总数	水样稀释:用lml无菌移液管移取1ml水样注入到9ml无菌水中,混匀成稀释10倍的水样;再用1ml无菌移液管取1ml稀释10倍后的水样注入到9ml无菌水中,混匀成稀释100倍的水样。培养基配制及灭菌: (1)营养琼脂:水=33g:1000ml 121℃灭菌15min。
8	总磷	用5.00ml移液管吸取4ml过硫酸钾溶液与样品摇匀,放入蒸汽灭菌锅消解

表 4-4 土壤样品前处理方法

序号	检测项目	前处理方法
1	pН	称取10.0g样品置于50ml烧杯中,用50.0ml的量筒加入25ml(无二氧化碳)水,将容器密封后,放在磁力搅拌器上剧烈搅拌2min,静置30min后测定。
2	六价铬	分別准确称取适量样品置于250ml烧杯中,加入50.0ml碱性提取溶液,再加入400mg 氯化镁和0.5ml磷酸氢二钾磷酸二氢钾缓冲溶液。放入搅拌子,用聚乙烯薄膜封口,置于搅拌加热装置上,常温搅拌5分钟,开启加热装置,加热搅拌至95℃,保持60分钟。取下烧杯,冷却至室温。用滤膜抽滤,将滤液置于250ml烧杯中,用硝酸调节溶液的pH值至7.5±0.5。将此溶液转移至100ml容量瓶中,用水定容至标线、摇匀、待测。
3	镉、铜、镍、 铅、钴、锰	电热板加热消解: 移取15ml王水于100ml锥形瓶中,加入3粒或4粒小玻璃珠,放上玻璃漏斗,于电热板上加热至微沸,使王水蒸汽浸润整个锥形瓶内壁约30min,冷却后弃去,用实验用水洗净锥形瓶内壁,晾干待用。称取待测样品0.1g(精确至0.0001g),置于上述已准备好的100ml锥形瓶中,加入60ml王水溶液,放上玻璃漏斗于电热板上加热,保持王水处于微沸状态2h(保持王水蒸汽在瓶壁和玻璃漏斗上回流,但反应不能过于剧烈而导致样品溢出)。消解结束后静置冷却至室温,用慢速定量滤纸将提取液过滤收集于50ml容量瓶。待提取液滤尽后,用少量硝酸溶液清洗玻璃漏斗、锥形瓶和滤渣至少3次,洗液一并过滤收集于容量瓶中,用实验用水定容至刻度。
4	汞、砷、锑	准确称取风干过筛后的样品0.1-0.5g置于溶样杯中,用少量实验用水润湿。在通风橱中先加入6ml盐酸,再慢慢加入2ml硝酸,混匀使样品与消解液充分接触。消解完成后再置于比色管(50ml)定容,混匀待测。
5	铊	称取0.2-0.5g样品于50ml坩埚中,加水润湿后加入10ml硝酸,3ml氢氟酸,160-180℃加盖消解至无明显黑色物质,若黑色物质多,可补加2ml硝酸和2ml双氧水,继续加盖消解,180℃加盖赶酸,蒸至近干,取下坩埚稍冷,加入0.5ml硝酸,温热溶解残渣,冷却后转移至50ml比色管中,定容,取上清液待测。
6	挥发性有机物	将样品放至室温后,放在吹扫捕集装置上分析。
7	半挥发性有机 物、苯胺	将样品放在搪瓷盘上,混匀,除去枝棒、叶片、石子等异物,并进行四分法租分。取适量混匀后样品,放入真空冷冻干燥机中进行干燥脱水。干燥后的样品研磨、过0.25mm孔径的筛子,均化处理成250μm(60目)左右的颗粒。然后称取约20.00g样品,全部转移至提取器中待用。按照HJ783对样品进行加压流体萃取。将样品经旋转蒸发浓缩,浓缩液通过层析柱进行净化,用二氯甲烷-丙酮混合溶剂洗涤层析柱2次,合并净化液,再次浓缩、氮吹至约1ml,加入内标,定容至1ml,待测。
8	石油烃	样品用冷冻干燥机冷冻干燥,研磨处理成约 1mm 的颗粒,称取10.00~10.04g(精确 0.01),洗净的萃取池拧紧底盖,垂直放在水平台面上。将

		专用的玻璃纤维滤膜放置于其底部,项部放置专用漏斗。用小烧杯称取适量试样,轻微晃动小烧杯使其混入试样。按编号将试样依次通过专用漏斗小心转移至萃取池,移去漏斗,拧紧顶盖(应避免试样粘在萃取池螺纹上或酒落)。 竖直平稳拿起萃取池,再次拧紧两端盖子,将其竖直平稳放入加压流体萃取装置样品盘。以正已烷为提取剂进行提取。
		依次用10ml正己烷-二氯甲烷混合溶剂、10ml正己烷活化硅酸镁净化柱。待柱上正己烷近干时,将浓缩液全部转移至净化柱中,开始收集流出液,用约2ml正己烷洗涤浓缩液收集装置,转移至净化柱,再用12ml正己烷淋洗净化柱,收集淋洗液,与流出液合并,浓缩至1.0ml,待测。
9	水溶性氟化物	准确称取过0.149mm(100)筛的土样5g(精确至0.01g)于提取瓶中,加入50.0ml水,加盖摇匀,于25±5℃水浴下超声提取30min,静置数分钟,转移至离心管中,离心5-10min(转速4000r/min),准确移取处理后试样的上清液40.0ml于50ml容量瓶中,加入10.0ml总离子强度调节缓冲溶液,用水定容至标线,混匀后测定其电位响应值。

4.3 样品制备的质量控制

样品制备过程的质量控制主要在样品风干和样品制样过程中进行,土壤风干室和土壤制样室相互独立,并进行有效的隔离,能够避免相互之间的影响。土壤制样室是在下吸风通风柜中内进行,每次制样后进行清理,避免样品之间相互干扰和影响。

制样过程中的质量控制:

- (1) 保持工作室的整洁,整个过程中必须戴一次性防护手套;
- (2) 制样前认真核对样品名称与流转信息;
- (3) 人员之间进行相互监督,避免研磨过程中样品散落、飞溅;
- (4) 制样工具在每处理一个样品后均需擦洗干净,严防交叉污染。

4.4 检测分析质量控制

(1) 人员

检测人员严格按照标准或作业指导书所规定的程序进行检测,原始记录在检测活动发生过程中及时记录,检测数据由校核人员进行校对,校核人员也具备相应项目的上岗资格。

(2) 检测设备

为了确保检测结果的准确性和有效性,公司配备了电热板、吹扫捕集装置、真空冷冻干燥机等前处理设备;等离子体质谱仪、原子吸收光谱仪、原子荧光光度计、离子色谱仪、气相色谱和质谱联用仪、气相色谱仪等全自动检测设备。主要仪器设备均经检定/校准,仪器设备均满足标准要求。

表 4-5 主要仪器设备一览表

序号	仪器名称及型号	仪器编号	用途
1	PHB-5 便携式pH计	B76	pH检测

2	TL2300EPA 浊度计	A20	浊度检测
3	V2200可见分光光度计	A34	挥发酚、氰化物、阴离子表面活 性剂等检测
4	LS-35LD 立式压力蒸汽灭菌器	A100	水样前处理
5	DK-S26 电热恒温水浴锅	A67	水样前处理
6	DNP-9052 电热恒温培养箱	A68	水样前处理
7	JA1003 电子天平	A64	称量
8	XSP-16A 生物显微镜	A63	微生物检测
9	XK-97A 菌落计数器	A74	微生物检测
10	JC-WD-12 氮吹仪	A54	土壤前处理
11	DK-98- II 电炉(两联)	A35	水样加热
12	YDL-HP06 全自动蒸馏仪	A99	水样前处理
13	mp5002 电子天平	A31	称量
14	DSX-18L 手提式高压蒸汽灭菌器	A71	水样前处理
15	MetrohmECO-IC 离子色谱仪	A03	阴离子检测
16	7800 等离子体质谱仪(ICP-MS)	A97	金属检测
17	8860,5977B 气相色谱和质谱联用仪	A76、A94	有机物检测
18	PTC-III 吹扫捕集仪	A77	进样
19	SJIA-12N-60A 真空冷冻干燥机	A96	土壤冷冻干燥
20	RE-52AA 旋转蒸发仪	A53	水样、土壤前处理
21	GL-3250B 磁力搅拌器	A12	土壤前处理
22	AA6880 原子吸收光谱仪	A15、A49	金属检测
23	PHSJ-3F pHt+	A104	土壤pH检测
24	GZX9140MBE 电热鼓风干燥箱	A17	干燥
25	ME204E 电子天平	A57	称量
26	7890B 气相色谱仪	A04	有机物检测
27	752 紫外可见分光光度计	A92	硫化物检测
28	HHS-6 数显恒温水浴锅	A103	水样前处理
29	HPFE 06 高通量加压流体萃取仪	A90	土壤前处理
30	AFS-8520 原子荧光光谱仪	A05	金属检测

31	SD46-1 智能电热板	A108	样品消解
32	YMW-HP 微波消解仪	A107	土壤前处理
33	5110 电感耦合等离子体光谱仪(ICP)	A02	金属检测
34	KQ3200DE超声波清洗器	A11	土壤前处理
35	TD6M离心机	A48	土壤前处理
36	PXSJ-216F型离子计	A82	水溶性氟化物检测

(3) 试剂耗材

用于采样和检测分析所使用的试剂、实验用水、采样瓶(广口瓶、玻璃瓶等)及其他耗材,均进行了质量验收,确保试剂耗材的质量满足标准要求。必要时,为了消除试剂和器皿中所含待测物组分及考虑到操作过程的沾污,采用试剂空白试验,然后从试验测定结果中扣除空白值进行校正。

(4) 检测方法

实验室优先选用国家环保总局颁发的《环境监测技术规范》标准中规定的检测方法,其次选用国家标准方法和行业标准,所采用的方法均通过CMA 计量认证。

(5) 环境条件

实验室检测设施及环境条件满足相关法律法规、技术规范或标准的要求,避免影响结果的质量或准确度。实验室设有专门的土壤样品风干室、土壤样品制样室、挥发性气相色谱室、半挥发GC-MS室、挥发性前处理室、离子色谱室、理化室、产品检测室、天平室、光谱室、原子荧光室等专有实验室,各实验室布局合理,隔离措施到位,避免相互干扰。

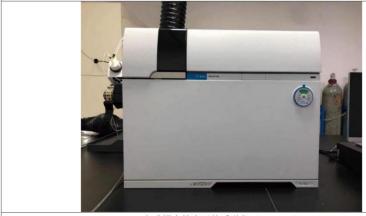
当设施和环境条件对检测结果的质量有影响时,严格控制环境条件,并及时记录环境条件,这种记录是反映环境条件变化的信息,是分析数据变化的参考因素,是保证在同等条件下可以复现检测工作的重要条件。

实验室建立和实施安全作业管理程序,对涉及化学危险品、毒品、有害生物、电离辐射、高温、高电压、撞击以及水、气、火、电等危及安全的因素和环境,有效控制确保安全。

(6) 实验室质量控制

根据国标方法及《浙江省环境监测质量保证技术规定》(第三版)相关规定。本项目实验室内部质量控制包括:标准物质控制、加标回收率控制、平行样控制、空白样品测试等手段。

4.5 实验室设备图集



样品制备

样品前处理

电感耦合等离子体质谱仪(ICP-MS)

五、实验室内部质量控制结果分析与统计

5.1 使用标准物质或质控样品测试

当具备与被测地下水、土壤样品基本相同或类似的有证标准物质时,应当在每批样品分析时同时插入与被测样品含量水平相当的有证标准物质进行分析测试。每批次同类型分析样品要求按样品数 5%的比例插入标准物质样品;当批次分析样品数小于 20 时,应至少插入 1个标准物质样品。

当测定值落在保证值范围内,可判定该批样品分析测试准确度合格,若不能落在保证值范围内,则判定该批次分析不合格,应查明原因,该批次样品需重新检测分析。

本项目地下水、土壤样品相关指标检测,公司均购买了有证标准物质,所有标准物质的 检测结果表明,检测浓度均在其质控范围内。

表 5-1 地下水准确度控制表(标准物质)

指标	检出限	标准物质编号	标准值	测定值	相对误 差%	允许相对 误差%	评价
	,	780502 780503	6.88	6.89	0.01	±0.01pH	合格
pН	/		9.23	9.23	0.00		合格
汞	4.00×10 ⁻⁵	B21070358	0.0 μg/L	0.0	0.0	±20	合格
7K	mg/L	(2021-089)	2.5 μg/L	2.5	0.0	±20	合格
砷	3.00×10 ⁻⁴	103019	0.0 μg/L	0.0	0.0	±20	合格
14中	mg/L	(2022-073)	10.0μg/L	10.1	1.0	±20	合格
7:00:	4.00×10 ⁻⁴ mg/L	20A016-2 (2020-142)	0.0 μg/L	0.0	0.0	±20	合格
硒			10.0μg/L	9.1	-9.0	±20	合格
锑	2.00×10 ⁻⁴ mg/L	209027-2 (2020-143)	0.0 μg/L	0.0	0.0	±20	合格
圳			10.0μg/L	9.5	-5.0	±20	合格
阴离子表面活	0.05 mg/L	M311 (2019-070)	0.10 mg/L	0.092	-8.0	±20	合格
性剂			0.30 mg/L	0.321	7.0	±20	合格
75 11, 14m	0.003 mg/L	B22062275 (2022-098)	4.00µg	3.84	-4.0	±10	合格
硫化物			12.0µg	11.6	-3.3	±10	合格
<i>EE</i>	0.025 /I	B21110343 (2022-006)	0.20 mg/L	0.202	1.0	±5	合格
氨氮	0.025 mg/L		0.80 mg/L	0.796	-0.5	±5	合格
铍	4.00×10 ⁻⁵ mg/L	22D80136	200μg/L	203	1.5	±10	合格
铝	1.15×10 ⁻³ mg/L	(2022-	200μg/L	213	6.5	±10	合格
铬	1.10×10 ⁻⁴ mg/L	115A)	200μg/L	203	1.5	±10	合格

				,			
锰	1.20×10 ⁻⁴ mg/L		200μg/L	203	1.5	±10	合格
铁	8.20×10 ⁻⁴ mg/L		$200 \mu g/L$	210	5.0	±10	合格
镍	6.00×10 ⁻⁵ mg/L		200μg/L	204	2.0	±10	合格
铜	8.00×10 ⁻² mg/L		200μg/L	214	2.0	±10	合格
锌	6.70×10 ⁻⁴ mg/L		200μg/L	216	8.0	±10	合格
镉	5.00×10 ⁻⁵ mg/L		200μg/L	208	4.0	±10	合格
铅	9.00×10 ⁻⁵ mg/L		200μg/L	209	4.5	±10	合格
钴	3.00×10 ⁻⁵ mg/L	1	200μg/L	204	2.0	±10	合格
铊	2.00×10 ⁻⁵ mg/L	1	200μg/L	209	4.5	±10	合格
	0.002 /5	103313	0.020 mg/L	0.020	0.0	±15	合格
亚硝酸盐氮	0.003 mg/L	(2019-084)	0.100 mg/L	0.098	-2.0	±5	合格
E /le shr	0.006	B2007142	0.50 mg/L	0.532	6.4	±10	合格
氟化物	0.006 mg/L	(2021-047)	4.00 mg/L	3.90	-2.5	±10	合格
E (), th/m	0.007	B21060220	0.50 mg/L	0.504	0.8	±10	合格
氯化物	0.007 mg/L	(2021-055)	4.00 mg/L	3.76	-6.0	±10	合格
73k III-A 4k	0.004 mg/L	B1906073 (2019-149)	0.50 mg/L	0.472	-5.6	±10	合格
硝酸盐			4.00 mg/L	3.74	-6.5	±10	合格
7大亚公4日	0.018 mg/L	189031-3	0.50 mg/L	0.519	3.8	±10	合格
硫酸根		(2019-031)	4.00 mg/L	3.78	-5.5	±10	合格
4年4~1100		A22030171	0.0040 mg/L	0.0041	2.5	±15	合格
挥发酚	0.0003 mg/L	(2022-043)	0.0200 mg/L	0.0202	1.0	±15	合格
** ***	0.01	B21120228	0.08 mg/L	0.084	5.0	±10	合格
总磷	0.01 mg/L	(2022-035)	0.40 mg/L	0.406	1.5	±10	合格
耗氧量	0.05mg/L	2031196 (2022-030)	6.97 mg/L	6.81	-2.3	±8.8	合格
总硬度	5.00mg/L	B22020243 (2022-093)	1.57mmol/L	1.54	-1.9	±5.1	合格
<i>□</i> /1, 11-	0.004	B22020058	0.025 mg/L	0.024	-4.0	±15	合格
氰化物	0.004 mg/L	(2022- 008B)	0.150 mg/L	0.150	0.0	±10	合格
) . /A &		G22020089	1.00µg	1.02	2.0	±10	合格
六价铬	0.004 mg/L	(2022-057)	8.00µg	8.08	1.0	±5	合格
钠	0.12 mg/L	22D80136 (2022-115B)	4.00 mg/L	3.97	-0.8	±10	合格
氯仿	1.4µg/L	甲醇中 59+1	30.0µg/L	28.8	-4.0	±20	合格

四氯化碳	1.5µg/L	种 VOCs 混标 301984H55	30.0μg/L	31.0	3.3	±20	合格
苯	1.4µg/L	(2021-012), 甲醇中 6 种	$30.0 \mu \text{g/L}$	30.9	3.0	±20	合格
甲苯	1.4µg/L	VOC 混标 M0700121 (2021-011)	30.0µg/L	30.3	1.0	±20	合格

表 5-2 土壤准确度控制表 (标准物质)

指标	检出限	标准物质编号	标准值	测定值	相对误 差%	允许相 对误 差%	评价
		780501	4.00	4.00	0.00	±0.01pH	合格
pН	/	780502	6.86	6.86	0.00	±0.01pH	合格
		780503	9.18	9.18	0.00	±0.01pH	合格
苯胺	0.03mg/kg	苯胺纯品 G174798	20.0mg/L	19.0	-5.0	±30	合格
2-氯苯酚	0.06mg/kg		20.0mg/L	19.8	-1.0	±30	合格
硝基苯	0.09 mg/kg		20.0mg/L	19.0	-5.0	±30	合格
萘	0.09 mg/kg		20.0mg/L	20.7	3.5	±30	合格
苯并 (a) 蒽	0.1 mg/kg	二氯甲烷中	20.0mg/L	19.4	-3.0	±30	合格
崫	0.1 mg/kg	64 种	20.0mg/L	20.5	2.5	±30	合格
苯并 (b) 荧蒽	0.2 mg/kg	SVOC: 22060155	20.0mg/L	20.5	2.5	±30	合格
苯并(k) 荧蒽	0.1 mg/kg	(2022-108)	20.0mg/L	19.6	-2.0	±30	合格
苯并 (a) 芘	0.1 mg/kg		20.0mg/L	18.2	-9.0	±30	合格
茚并(1,2,3-cd) 芘	0.1 mg/kg		20.0mg/L	21.1	5.5	±30	合格
二苯并(ah)蒽	0.1 mg/kg		20.0mg/L	19.6	-2.0	±30	合格
氯甲烷	1.0µg/kg		30.0μg/L	31.5	5.0	±20	合格
氯乙烯	1.0µg/kg		30.0µg/L	31.4	4.7	±20	合格
1,1-二氯乙烯	1.0µg/kg	甲醇中 59+1	30.0μg/L	30.7	2.3	±20	合格
二氯甲烷	1.5µg/kg	种 VOCs 混标 301984H55	30.0μg/L	30.9	3.0	±20	合格
反式-1,2-二氯乙烯	1.4µg/kg	(2021-012),甲醇中	30.0μg/L	30.3	1.0	±20	合格
1,1-二氯乙烷	1.2μg/kg	6种 VOC 混 标 M0700121	30.0μg/L	30.9	3.0	±20	合格
顺式 1,2-二氯乙烯	1.3µg/kg	(2021-011)	30.0μg/L	29.0	-3.3	±20	合格
氯仿	1.1µg/kg		30.0µg/L	30.5	1.7	±20	合格
1,1,1-三氯乙烷	1.3µg/kg		30.0µg/L	32.7	9.0	±20	合格

四氯化碳	$1.3 \mu g/kg$		30.0μg/L	29.0	-3.3	±20	合格
苯	1.9µg/kg		30.0μg/L	33.7	12.3	±20	合格
1,2-二氯乙烷	1.3µg/kg		30.0μg/L	32.4	8.0	±20	合格
三氯乙烯	1.2μg/kg		30.0μg/L	29.6	-1.3	±20	合格
1,2-二氯丙烷	1.1µg/kg		30.0μg/L	30.7	2.3	±20	合格
甲苯	1.3µg/kg		30.0μg/L	27.7	-7.7	±20	合格
1,1,2-三氯乙烷	1.2μg/kg		30.0μg/L	30.7	2.3	±20	合格
四氯乙烯	1.4µg/kg		30.0μg/L	30.2	0.7	±20	合格
氯苯	1.2μg/kg		30.0μg/L	28.7	-4.3	±20	合格
1,1,1,2-四氯乙烷	1.2μg/kg		30.0μg/L	30.7	2.3	±20	合格
乙苯	1.2μg/kg		30.0μg/L	31.9	6.3	±20	合格
间,对-二甲苯	1.2µg/kg		30.0μg/L	31.7	5.7	±20	合格
邻-二甲苯	1.2µg/kg		30.0μg/L	29.9	-0.3	±20	合格
苯乙烯	1.1μg/kg		30.0μg/L	31.5	5.0	±20	合格
1,1,2,2-四氯乙烷	1.2μg/kg		30.0μg/L	31.0	3.3	±20	合格
1,2,3-三氯丙烷	1.2μg/kg		30.0μg/L	29.7	-1.0	±20	合格
1,4-二氯苯	1.5µg/kg		30.0μg/L	31.8	6.0	±20	合格
1,2-二氯苯	1.5µg/kg		30.0μg/L	30.7	2.3	±20	合格
氯甲烷	1.0μg/kg		30.0μg/L	28.9	-3.7	±20	合格
氯乙烯	1.0µg/kg		30.0μg/L	27.2	-9.3	±20	合格
1,1-二氯乙烯	$1.0 \mu g/kg$		30.0μg/L	28.1	-6.3	±20	合格
二氯甲烷	1.5µg/kg		30.0μg/L	30.0	0.0	±20	合格
反式-1,2-二氯乙烯	1.4µg/kg	甲醇中 59+1	30.0μg/L	27.9	-7.0	±20	合格
1,1-二氯乙烷	1.2µg/kg	种 VOCs 混标 301984H55	30.0μg/L	28.8	-4.0	±20	合格
顺式 1,2-二氯乙烯	1.3µg/kg	(2021-012),甲醇中	30.0μg/L	25.6	-14.7	±20	合格
氯仿	1.1µg/kg	6种 VOC 混 标 M0700121	30.0μg/L	30.7	2.3	±20	合格
1,1,1-三氯乙烷	$1.3 \mu g/kg$	(2021-011)	30.0μg/L	27.7	-7.7	±20	合格
四氯化碳	$1.3 \mu g/kg$		30.0μg/L	27.7	-7.7	±20	合格
苯	1.9µg/kg		30.0μg/L	27.3	-9.0	±20	合格
1,2-二氯乙烷	1.3µg/kg		30.0μg/L	29.0	-3.3	±20	合格
三氯乙烯	1.2µg/kg		30.0μg/L	30.3	1.0	±20	合格

1,2-二氯丙烷	1.1µg/kg		30.0μg/L	29.3	-2.3	±20	合格
甲苯	1.3µg/kg		30.0µg/L	28.4	-5.3	±20	合格
1,1,2-三氯乙烷	1.2μg/kg		30.0μg/L	27.5	-8.3	±20	合格
四氯乙烯	1.4µg/kg		30.0μg/L	27.2	-9.3	±20	合格
氯苯	1.2µg/kg		30.0μg/L	32.9	9.7	±20	合格
1,1,1,2-四氯乙烷	1.2μg/kg		30.0µg/L	32.3	7.7	±20	合格
乙苯	1.2μg/kg		30.0μg/L	27.2	-9.3	±20	合格
间,对-二甲苯	1.2µg/kg		30.0μg/L	30.8	2.7	±20	合格
邻-二甲苯	1.2µg/kg		30.0μg/L	30.7	2.3	±20	合格
苯乙烯	1.1µg/kg		30.0μg/L	29.7	-1.0	±20	合格
1,1,2,2-四氯乙烷	1.2µg/kg		30.0μg/L	31.0	3.3	±20	合格
1,2,3-三氯丙烷	1.2µg/kg		30.0μg/L	26.1	-13.0	±20	合格
1,4-二氯苯	1.5µg/kg		30.0μg/L	30.0	0.0	±20	合格
1,2-二氯苯	1.5µg/kg		30.0μg/L	32.0	6.7	±20	合格
7 Sep. 147	C II.	21090701 (2021-	1550mg/L	1628	5.0	±10	合格
石油烃	6 mg/kg	095B)	1550mg/L	1669	7.7	±10	合格
汞	0.002 //	B21070358	0.4µg/L	0.39	-2.5	±5	合格
水	0.002 mg/kg	(2021-089)	2.50μg/L	2.5	0.0	±5	合格
砷	0.01 /1	103019	10.0μg/L	9.6	-4.0	±5	合格
14-Р	0.01 mg/kg	(2022-073)	2.5μg/L	2.5	0.0	±5	合格
锑	0.01	209027-2	10.0μg/L	9.5	-5.0	±5	合格
13/1	0.01 mg/kg	(2020-143)	1.5µg/L	1.5	0.0	±5	合格
铜	0.5 mg/kg		200μg/L	218	9.0	±10	合格
锰	0.7 mg/kg		200μg/L	199	-0.5	±10	合格
钴	0.03 mg/kg	22D80136	200μg/L	203	1.5	±10	合格
镍	2 mg/kg	(2022- 115A)	200μg/L	205	2.5	±10	合格
镉	0.07 mg/kg		200μg/L	202	1.0	±10	合格
铅	2 mg/kg		200μg/L	209	4.5	±10	合格
铊	0.1 mg/kg	GSS-2a	0.63	0.59	-6.3	±9.5	合格
· · · · · · · · · · · · · · · · · · ·	0.7 4	B2007142	0.0	< 0.7	/	< 0.7	合格
水溶性氟化物	0.7 mg/kg	(2021- 047B)	50.0μg	46.4	-7.2	±10	合格

5.2 加标回收率试验

当没有合适的基体有证标准物质时,应采用基体加标回收率试验对准确度进行控制。每批次同类型分析样品中,应随机抽取 5%的样品进行加标回收率试验;当批次分析样品数小于 20 时,应至少随机取 1 个样品进行加标回收试验。此外,在进行有机污染样品分析时,最好能进行替代物加标回收试验。

基体加标和替代物加标回收率试验应在样品前处理之前加标,加标样品与试验样应在相同的前处理和分析条件下进行分析测试。加标量可视被测组分含量而定,含量高的可加入被测组分含量的 0.5-1.0 倍,含量低的可加入 2-3 倍,但加标后被测组分的总量不得超出测定上限。根据标准的要求通过回收率判定质控是否合格。若基体加标回收率在规定的允许范围内,则该加标回收率试验样品的准确度控制为合格,否则为不合格,对于基体加标回收率试验结果合格率的要求应达到 100%,当出现不合格结果时,应查明其原因,采取适当的修正和预防措施,并对该批次样品重新进行分析测试。

表 5-3 地下水加标回收率质控统计

			9	00	*		90	
指标	样品编号	检出限	样品浓 度	加标量	测得浓 度	加标回 收率%	允许加 标回收 率%	评价
氟化物		0.006 mg/L	1.69	5.00µg	7.39	114	80-120	合格
氯化物	RBS2210	0.007 mg/L	113	5.00µg	117	80.0	80-120	合格
硝酸盐氮	155-1026- S-1-1	0.004 mg/L	4.86	5.00µg	8.92	81.2	80-120	合格
硫酸根		0.018 mg/L	26.3	5.00µg	31.2	98.0	80-120	合格
硫化物	RBS2210 020-1026- S-1-1	0.003 mg/L	0.134	0.60µg	0.581	74.5	60-120	合格
汞		4.00×10 ⁻⁵ mg/L	0.00	20.0μg	14.4	72	70-130	合格
砷	RBS2210	3.00×10 ⁻⁴ mg/L	0.00	8.00µg	9.96	124	70-130	合格
硒	020-1026- S-1-1	4.00×10 ⁻⁴ mg/L	0.00	100μg	82.3	82.3	70-130	合格
锑		2.00×10 ⁻⁴ mg/L	0.00	100μg	76.2	76.2	70-130	合格
铍		4.00×10 ⁻⁵ mg/L	0.00	5.00µg	4.90	98.0	80-120	合格
铝		1.15×10 ⁻³ mg/L	0.00	5.00µg	5.53	111	80-120	合格
铬	1101-S	1.10×10 ⁻⁴ mg/L	0.00	5.00µg	4.88	97.6	80-120	合格
锰	(实空	1.20×10 ⁻⁴ mg/L	0.04	5.00µg	4.94	98.0	80-120	合格
铁		8.20×10 ⁻⁴ mg/L	0.00	5.00µg	5.35	107	80-120	合格
镍		6.00×10 ⁻⁵ mg/L	0.00	5.00µg	4.93	98.6	80-120	合格

铜		8.00×10 ⁻⁵ mg/L	0.04	5.00µg	5.10	101	80-120	合格
锌		6.70×10 ⁻⁴ mg/L	0.00	5.00µg	5.44	109	80-120	合格
镉		5.00×10 ⁻⁵ mg/L	0.00	5.00µg	4.98	99.6	80-120	合格
铅		9.00×10 ⁻⁵ mg/L	0.01	5.00µg	4.97	99.2	80-120	合格
钴		3.00×10 ⁻⁵ mg/L	0.00	5.00µg	4.87	97.4	80-120	合格
铊		2.00×10 ⁻⁵ mg/L	0.00	5.00µg	4.93	98.6	80-120	合格
铍		4.00×10 ⁻⁵ mg/L	0.00	2.25µg	2.43	108	70-130	合格
铬	-	1.10×10 ⁻⁴ mg/L	0.00	2.25µg	2.19	97.3	70-130	合格
锰	-	1.20×10 ⁻⁴ mg/L	2.40	2.25µg	4.74	104	70-130	合格
铁		8.20×10 ⁻⁴ mg/L	0.39	2.25µg	2.39	88.9	70-130	合格
镍	RBS2210 020-1026-	6.00×10 ⁻⁵ mg/L	0.90	2.25µg	3.37	110	70-130	合格
铜	S-5-1	8.00×10 ⁻⁵ mg/L	0.04	2.25µg	2.26	98.7	70-130	合格
镉	-	5.00×10 ⁻⁵ mg/L	0.01	2.25µg	2.15	95.1	70-130	合格
铅		9.00×10 ⁻⁵ mg/L	0.01	2.25µg	2.02	89.3	70-130	合格
钴		3.00×10 ⁻⁵ mg/L	0.00	2.25µg	2.16	96.0	70-130	合格
六价铬	RBS2210 155-1026- S-1-1	0.004mg/L	0.13	1.00µg	1.00	87.0	85-115	合格
钠	RBS2210 020-1026- S-1-1	0.12 mg/L	0.918	0.50mg	1.487	114	70-120	合格
氯仿		1.4µg/L	0	0.150μg	0.145	97	60-130	合格
四氯化碳	RBS2210	1.5µg/L	0	0.150μg	0.137	91	60-130	合格
苯	020-1026- S-1-1	1.4μg/L	0	0.150µg	0.131	87	60-130	合格
甲苯		1.4µg/L	0	0.150μg	0.156	104	60-130	合格

注: 本项目氟化物、氯化物、硝酸盐氮、硫酸根、六价铬指标与 RBS2210155 同批次检测,加标质控相同

表 5-4 土壤加标回收率质控统计

指标	样品编号	检出限	样品浓 度	加标量	测得浓 度	加标 回收 率%	允许加 标回收 率%	评价
苯胺		0.03mg/kg	0	$20.0 \mu g$	9.54	48	35-150	合格
2-氯苯酚	RBS2210020-	0.06mg/kg	0	20.0μg	11.0	55	35-150	合格
硝基苯	1026-T-14-1	0.09mg/kg	0	20.0µg	9.77	49	35-150	合格
萘		0.09mg/kg	0	20.0μg	17.2	86	35-150	合格

苯并 (a) 蒽		0.1mg/kg	0	20.0μg	18.3	92	35-150	合格
崫		0.1mg/kg	0	20.0µg	15.4	77	35-150	合格
苯并(b) 荧蒽		0.2mg/kg	0	20.0µg	18.9	94	35-150	合格
苯并(k) 荧蒽		0.1mg/kg	0	20.0μg	19.1	96	35-150	合格
苯并 (a) 芘		0.1mg/kg	0.1	20.0μg	17.2	86	35-150	合格
茚并(1,2,3-cd) 芘		0.1mg/kg	0	20.0μg	18.5	92	35-150	合格
二苯并(ah)蒽		0.1mg/kg	0	20.0µg	18.8	94	35-150	合格
氯甲烷		1.0µg/kg	0	0.150μg	0.144	96	70-130	合格
氯乙烯		1.0µg/kg	0	0.150μg	0.143	95	70-130	合格
1,1-二氯乙烯		1.0µg/kg	0	0.150μg	0.146	97	70-130	合格
二氯甲烷		1.5µg/kg	0	0.150μg	0.134	89	70-130	合格
反式-1,2-二氯乙烯		1.4µg/kg	0	0.150μg	0.136	91	70-130	合格
1,1-二氯乙烷		1.2µg/kg	0	0.150μg	0.142	95	70-130	合格
顺式 1,2-二氯乙烯		1.3µg/kg	0	0.150μg	0.124	83	70-130	合格
氯仿		1.1µg/kg	0	0.150μg	0.144	96	70-130	合格
1,1,1-三氯乙烷		1.3µg/kg	0	0.150μg	0.136	91	70-130	合格
四氯化碳		1.3µg/kg	0	0.150μg	0.136	91	70-130	合格
苯		1.9µg/kg	0	0.150μg	0.164	109	70-130	合格
1,2-二氯乙烷	RBS2210020-	1.3µg/kg	0	0.150μg	0.134	89	70-130	合格
三氯乙烯	1025-T-7-1	1.2µg/kg	0	0.150μg	0.142	95	70-130	合格
1,2-二氯丙烷		1.1µg/kg	0	0.150μg	0.147	98	70-130	合格
甲苯		1.3µg/kg	0	0.150μg	0.150	100	70-130	合格
1,1,2-三氯乙烷		1.2µg/kg	0	0.150µg	0.151	101	70-130	合格
四氯乙烯		1.4µg/kg	0	0.150μg	0.162	108	70-130	合格
氯苯		1.2µg/kg	0	0.150μg	0.160	107	70-130	合格
1,1,1,2-四氯乙烷		1.2µg/kg	0	0.150μg	0.165	110	70-130	合格
乙苯		1.2µg/kg	0	0.150μg	0.164	109	70-130	合格
间,对-二甲苯		1.2µg/kg	0.001	0.150μg	0.151	100	70-130	合格
邻-二甲苯		1.2µg/kg	0.001	0.150μg	0.157	104	70-130	合格
苯乙烯		1.1µg/kg	0.002	0.150μg	0.149	98	70-130	合格
1,1,2,2-四氯乙烷		1.2µg/kg	0	0.150μg	0.133	89	70-130	合格

1,2,3-三氯丙烷		1.2µg/kg	0	0.150μg	0.143	95	70-130	合格
1,4-二氯苯		1.5µg/kg	0	0.150μg	0.160	107	70-130	合格
1,2-二氯苯		1.5µg/kg	0	0.150μg	0.146	97	70-130	合格
氯甲烷		1.0µg/kg	0	0.150μg	0.146	97	70-130	合格
氯乙烯		1.0µg/kg	0	0.150μg	0.135	90	70-130	合格
1,1-二氯乙烯		1.0µg/kg	0	0.150μg	0.146	97	70-130	合格
二氯甲烷		1.5µg/kg	0	0.150μg	0.133	89	70-130	合格
反式-1,2-二氯乙烯		1.4µg/kg	0	0.150μg	0.134	89	70-130	合格
1,1-二氯乙烷		1.2µg/kg	0	0.150μg	0.126	84	70-130	合格
顺式 1,2-二氯乙烯		1.3µg/kg	0	0.150µg	0.122	81	70-130	合格
氯仿		1.1µg/kg	0	0.150μg	0.128	85	70-130	合格
1,1,1-三氯乙烷		1.3µg/kg	0	0.150μg	0.131	87	70-130	合格
四氯化碳		1.3µg/kg	0	0.150µg	0.126	84	70-130	合格
苯		1.9µg/kg	0	0.150μg	0.144	96	70-130	合格
1,2-二氯乙烷		1.3µg/kg	0	0.150μg	0.124	83	70-130	合格
三氯乙烯		1.2µg/kg	0	0.150μg	0.142	95	70-130	合格
1,2-二氯丙烷	RBS2210020- 1026-T-8-1	1.1µg/kg	0	0.150μg	0.134	89	70-130	合格
甲苯		1.3µg/kg	0	0.150μg	0.143	95	70-130	合格
1,1,2-三氯乙烷		1.2µg/kg	0	0.150μg	0.159	106	70-130	合格
四氯乙烯		1.4µg/kg	0.001	0.150μg	0.142	94	70-130	合格
氯苯		1.2µg/kg	0	0.150μg	0.146	97	70-130	合格
1,1,1,2-四氯乙烷		1.2µg/kg	0	0.150μg	0.149	99	70-130	合格
乙苯		1.2µg/kg	0	0.150µg	0.121	81	70-130	合格
间,对-二甲苯		1.2µg/kg	0	0.150μg	0.134	89	70-130	合格
邻-二甲苯		1.2µg/kg	0	0.150μg	0.130	87	70-130	合格
苯乙烯		1.1µg/kg	0.001	0.150μg	0.127	84	70-130	合格
1,1,2,2-四氯乙烷		1.2µg/kg	0	0.150μg	0.147	98	70-130	合格
1,2,3-三氯丙烷		1.2µg/kg	0.001	0.150μg	0.146	97	70-130	合格
1,4-二氯苯		1.5µg/kg	0	0.150μg	0.142	95	70-130	合格
1,2-二氯苯		1.5µg/kg	0	0.150μg	0.131	87	70-130	合格
六价铬	RBS2210020- 1025-T-6-1	0.5mg/kg	1.80	125µg	91.88	72.1	70-130	合格

	1101-T (实 空 1)		0.0591	0.3100mg	0.4151	115	70-120	合格
石油烃	1101-T (实 空 2)	6 mg/kg	0.0582	0.3100mg	0.4160	115	70-120	合格
HIMAL	RBS2210020- 1024-T-9-2	o mg/kg	0.2930	0.3100mg	0.4854	62	50-140	合格
	RBS2210020- 1025-T-10-1		0.2754	0.3100mg	0.4766	65	50-140	合格
铜		0.5 mg/kg	4.03	2.50µg	5.92	75.6	70-125	合格
钴		0.03mg/kg	1.58	2.50µg	3.51	77.2	70-125	合格
镍	RBS2210020- 1025-T-6-1	2 mg/kg	2.32	2.50µg	4.23	76.4	70-125	合格
镉		0.07mg/kg	0.09	2.50µg	2.03	77.6	70-125	合格
铅		2 mg/kg	6.48	2.50µg	8.26	71.2	70-125	合格
铜		0.5 mg/kg	2.65	2.50µg	4.61	78.4	70-125	合格
钴		0.03mg/kg	1.22	2.50µg	3.26	81.6	70-125	合格
镍	RBS2210020- 1025-T-6-2	2 mg/kg	1.72	2.50µg	3.72	80.0	70-125	合格
镉		0.07mg/kg	0.08	2.50µg	2.12	81.6	70-125	合格
铅		2 mg/kg	6.58	2.50µg	8.38	72.0	70-125	合格
水溶性氟化物	RBS2210020- 1026-T-8-1	0.7 mg/kg	30.3	50.0μg	67.1	73.6	70-120	合格
水溶性氟化物	RBS2210020- 1024-T-9-1	0.7 mg/kg	40.5	50.0μg	79.2	77.4	70-120	合格

5.3 平行样测定

每批次样品分析时,每个检测项目均须做平行双样分析。在每批次分析样品中,应随机抽取5%的样品进行平行双样分析。当批次样品数小于20时,应至少随机抽取 1 个样品进行平行双样分析。

对于平行双样分析测试合格率要求应达到95%。当合格率小于95%时,应查明产生不合格结果的原因, 采取适当的纠正和预防措施。除对不合格结果重新分析测试外,应再增加5%-15%的平行双样分析比例, 直至总合格率达到95%。

表 5-5 地下水平行样质控统计

指标	检出限	样品编号	样品结果	平行样结果	相对偏差%	允许相 对偏 差%	评价
pН	/	RBS2210020- 1026-S-1-1	8.0	8.0	0.0	±0.1	合格
汞	4.00×10 ⁻⁵ mg/L	RBS2210020- 1026-S-1-1	<4.00×10 ⁻⁵	<4.00×10 ⁻⁵	/	/	1
砷	3.00×10 ⁻⁴ mg/L	RBS2210020- 1026-S-1-1	<3.00×10 ⁻⁴	<3.00×10 ⁻⁴	7	/	/

硒	4.00×10 ⁻⁴ mg/L	RBS2210020- 1026-S-1-1	<4.00×10 ⁻⁴	<4.00×10 ⁻⁴	1	/	/
锑	2.00×10 ⁻⁴ mg/L	RBS2210020- 1026-S-1-1	<2.00×10 ⁻⁴	<2.00×10 ⁻⁴	/	/	/
硫化物	0.003 mg/L	RBS2210020- 1026-S-1-1	< 0.003	< 0.003	1	/	1
溶解性总固体	/ (mg/L)	RBS2210020- 1026-S-1-1	140	143	3mg/L (绝对差)	±5mg/L (允许绝对 差)	合格
浑浊度	0.5NTU	RBS2210020- 1026-S-1-1	8.9	8.9	0.0	2.5	合格
氟化物	0.006 mg/L		0.824	0.793	1.9	10	合格
氯化物	0.007 mg/L	RBS2210020-	8.89	8.90	0.1	10	合格
硝酸盐氮	0.004mg/L	1026-S-1-1	6.71	6.81	0.7	10	合格
硫酸根	0.018mg/L		1.60	1.63	0.9	10	合格
氨氮	0.025mg/L	RBS2210020- 1026-S-1-1	0.937	0.940	0.2	15	合格
挥发酚	0.0003 mg/L	RBS2210020- 1026-S-1-1	< 0.0003	< 0.0003	1	/	/
氰化物	0.004 mg/L	RBS2210020- 1026-S-1-1	< 0.004	< 0.004	1	/	1
总磷	0.01 mg/L	RBS2210020- 1026-S-1-1	0.082	0.081	0.6	10	合林
亚硝酸盐氮	0.003 mg/L	RBS2210020- 1026-S-1-1	0.029	0.029	0.0	20	合格
耗氧量	0.05 mg/L	RBS2210020- 1026-S-1-1	4.2	4.1	2.4	5	合格
阴离子表面活 性剂	0.05 mg/L	RBS2210020- 1026-S-1-1	< 0.05	< 0.05	/	/	/
铍	4.00×10 ⁻⁵ mg/L		<4.00×10 ⁻⁵	<4.00×10 ⁻⁵	/	/	1
铝	1.15×10 ⁻³ mg/L		4.27×10 ⁻²	4.40×10 ⁻²	1.5	20	合构
铬	1.10×10 ⁻⁴ mg/L		<1.10×10 ⁻⁴	<1.10×10 ⁻⁴	1	/	/
锰	1.20×10 ⁻⁴ mg/L		0.110	0.129	8.0	20	合林
铁	8.20×10 ⁻⁴ mg/L		6.32×10 ⁻³	6.44×10 ⁻³	0.9	20	合材
镍	6.00×10 ⁻⁵ mg/L	RBS2210020-	5.19×10 ⁻⁴	5.66×10 ⁻⁴	4.3	20	合材
铜	8.00×10 ⁻⁵ mg/L	1026-S-1-1	1.60×10 ⁻³	1.62×10 ⁻³	0.6	20	合林
锌	6.70×10 ⁻⁴ mg/L		4.18×10 ⁻³	5.37×10 ⁻³	12.5	20	合材
镉	5.00×10 ⁻⁵ mg/L		1.03×10 ⁻⁴	1.52×10 ⁻⁴	19.2	20	合构
铅	9.00×10 ⁻⁵ mg/L		3.92×10 ⁻⁴	3.86×10 ⁻⁴	0.8	20	合材
钴	3.00×10 ⁻⁵ mg/L		2.74×10 ⁻⁴	3.01×10 ⁻⁴	4.7	20	合析
铊	2.00×10 ⁻⁵ mg/L		1.25×10 ⁻⁴	1.02×10 ⁻⁴	10.1	20	合材
总硬度	5.00mg/L	RBS2210020- 1026-S-1-1	92.2	92.6	0.4 (差 值)	4 (差 值)	合格
六价铬	0.004mg/L	RBS2210020- 1026-S-1-1	< 0.004	< 0.004	/	/	1

钠	0.12mg/L	RBS2210020- 1026-S-1-1	9.18	9.21	0.2	25	合格
氯仿	1.4μg/L		<1.4	<1.4	/	/	/
四氯化碳	1.5µg/L	RBS2210020-	<1.5	<1.5	/	/	/
苯	1.4μg/L	1026-S-1-1	<1.4	<1.4	/	/	/
甲苯	1.4µg/L		<1.4	<1.4	1	/	1

表 5-6 土壤平行样质控统计

指标	检出限	样品编号	样品结果	平行样结果	相对 偏 差%	允许相 对偏 差%	评价
pН	J	RBS2210020- 1026-T-8-1	7.40	7.41	0.01	0.3pH	合格
pН	1	RBS2210020- 1024-T-9-1	7.30	7.29	0.01	0.3pH	合格
pН	1	RBS2210020- 1025-T-10-1	7.35	7.36	0.01	0.3pH	合格
苯胺	0.03mg/kg		< 0.03	< 0.03	/	/	1
2-氯苯酚	0.06mg/kg		< 0.06	< 0.06	/	1	/
硝基苯	0.09 mg/kg		< 0.09	< 0.09	/	/	/
萘	0.09 mg/kg		< 0.09	< 0.09	/	/	/
苯并(a)蒽	0.1 mg/kg		< 0.1	< 0.1	/	1	1
薜	0.1 mg/kg	RBS2210020- 1026-T-8-1	< 0.1	< 0.1	/	1	1
苯并(b) 荧蒽	0.2 mg/kg	1020101	< 0.2	< 0.2	/	1	1
苯并(k) 荧蒽	0.1 mg/kg		< 0.1	< 0.1	/	/	1
苯并(a) 芘	0.1 mg/kg		< 0.1	< 0.1	1	1	7
茚并(1,2,3-cd) 芘	0.1 mg/kg		< 0.1	< 0.1	/	/	1
二苯并(ah)蒽	0.1 mg/kg		< 0.1	<0.1	/	1	1
苯胺	0.03mg/kg		< 0.03	< 0.03	/	/	1
2-氯苯酚	0.06mg/kg		< 0.06	< 0.06	/	/	1
硝基苯	0.09 mg/kg		< 0.09	< 0.09	/	/	1
萘	0.09 mg/kg	RBS2210020-	< 0.09	< 0.09	/	/	7
苯并(a)蒽	0.1 mg/kg	1024-T-9-1	< 0.1	< 0.1	/	1	1
萉	0.1 mg/kg		< 0.1	<0.1	/	/	/
苯并(b) 荧蒽	0.2 mg/kg		< 0.2	< 0.2	1	1	1
苯并(k) 荧蒽	0.1 mg/kg		< 0.1	< 0.1	/	1	/

苯并(a) 芘	0.1 mg/kg		< 0.1	< 0.1	/	/	/
茚并(1,2,3-cd) 芘	0.1 mg/kg		< 0.1	< 0.1	/	1	1
二苯并(ah)蒽	0.1 mg/kg		< 0.1	< 0.1	/	/	/
苯胺	0.03mg/kg		< 0.03	< 0.03	/	/	1
2-氯苯酚	0.06mg/kg		< 0.06	< 0.06	/	1	1
硝基苯	0.09 mg/kg		< 0.09	< 0.09	/	1	1
萘	0.09 mg/kg		< 0.09	< 0.09	1	/	/
苯并(a) 蒽	0.1 mg/kg		< 0.1	< 0.1	/	/	1
崫	0.1 mg/kg	RBS2210020- 1025-T-10-1	< 0.1	<0.1	/	1	1
苯并 (b) 荧蒽	0.2 mg/kg	1020 110 1	< 0.2	< 0.2	/	1	1
苯并 (k) 荧蒽	0.1 mg/kg		< 0.1	< 0.1	/	/	1
苯并(a) 芘	0.1 mg/kg		< 0.1	< 0.1	/	1	/
茚并(1,2,3-cd) 芘	0.1 mg/kg		< 0.1	< 0.1	/	/	1
二苯并(ah)蒽	0.1 mg/kg		< 0.1	< 0.1	/	/	1
氯甲烷	1.0µg/kg		<1.0	<1.0	/	1	1
氯乙烯	1.0µg/kg		<1.0	<1.0	/	1	/
1,1-二氯乙烯	1.0µg/kg		<1.0	<1.0	1	1	1
二氯甲烷	1.5µg/kg		<1.5	<1.5	1	1	1
反式-1,2-二氯乙烯	1.4µg/kg		<1.4	<1.4	1	1	1
1,1-二氯乙烷	1.2µg/kg		<1.2	<1.2	/	/	/
顺式 1,2-二氯乙烯	1.3µg/kg		<1.3	<1.3	/	1	1
氯仿	1.1µg/kg		<1.1	<1.1	1	1	1
1,1,1-三氯乙烷	1.3µg/kg	RBS2210020- 1026-T-8-1	<1.3	<1.3	/	1	1
四氯化碳	1.3µg/kg		<1.3	<1.3	/	/	1
1,2-二氯乙烷	1.3µg/kg		<1.3	<1.3	/	1	/
苯	1.9µg/kg		<1.9	<1.9	1	1	1
三氯乙烯	1.2µg/kg		<1.2	<1.2	/	1	1
1,2-二氯丙烷	1.1µg/kg		<1.1	<1.1	/	/	1
甲苯	1.3µg/kg		<1.3	<1.3	/	1	1
1,1,2-三氯乙烷	1.2µg/kg		<1.2	<1.2	/-	1	1
四氯乙烯	1.4µg/kg		<1.4	<1.4	/	1	/

氯苯	1.2µg/kg		<1.2	<1.2	/	/	/
1,1,1,2-四氯乙烷	1.2µg/kg	-	<1.2	<1.2	/	/	1
乙苯	1.2µg/kg		<1.2	<1.2	1	1	1
间,对-二甲苯	1.2µg/kg		<1.2	<1.2	1	1	7
邻-二甲苯	1.2µg/kg		<1.2	<1.2	/	/	/
苯乙烯	1.1µg/kg		<1.1	<1.1	/	/	1
1,1,2,2-四氯乙烷	1.2µg/kg		<1.2	<1.2	/	1	1
1,2,3-三氯丙烷	1.2µg/kg		<1.2	<1.2	/	1	1
1,4-二氯苯	1.5µg/kg		<1.5	<1.5	/	/	1
1,2-二氯苯	1.5µg/kg		<1.5	<1.5	/	/	1
氯甲烷	1.0µg/kg		<1.0	<1.0	/	1	7
氯乙烯	1.0µg/kg		<1.0	<1.0	/	1	1
1,1-二氯乙烯	1.0µg/kg		<1.0	<1.0	/	/	1
二氯甲烷	1.5µg/kg		<1.5	<1.5	/	1	1
反式-1,2-二氯乙烯	1.4µg/kg		<1.4	<1.4	/	1	1
1,1-二氯乙烷	1.2µg/kg		<1.2	<1.2	/	1	/
顺式 1,2-二氯乙烯	1.3µg/kg		<1.3	<1.3	/	/	1
氯仿	1.1µg/kg		<1.1	<1.1	/	1	7
1,1,1-三氯乙烷	1.3µg/kg		<1.3	<1.3	/	1	7
四氯化碳	1.3µg/kg		<1.3	<1.3	/	/	/
1,2-二氯乙烷	1.3µg/kg	RBS2210020- 1024-T-9-1	<1.3	<1.3	/	1	1
苯	1.9µg/kg		<1.9	<1.9	/	1	1
三氯乙烯	1.2µg/kg		<1.2	<1.2	/	1	1
1,2-二氯丙烷	1.1µg/kg		<1.1	<1.1	/	/	1
甲苯	1.3µg/kg		<1.3	<1.3	/	1	7
1,1,2-三氯乙烷	1.2µg/kg		<1.2	<1.2	/	/	7
四氯乙烯	1.4µg/kg		<1.4	<1.4	/	/	1
氯苯	1.2µg/kg		<1.2	<1.2	/	/	1
1,1,1,2-四氯乙烷	1.2µg/kg		<1.2	<1.2	/	/	1
乙苯	1.2µg/kg		<1.2	<1.2	/	1	1
间,对-二甲苯	1.2µg/kg		<1.2	<1.2	/	1	1

邻-二甲苯	1.2µg/kg		<1.2	<1.2	/	/	/
苯乙烯	1.1µg/kg		<1.1	<1.1	1	1	1
1,1,2,2-四氯乙烷	1.2µg/kg		<1.2	<1.2	1	1	1
1,2,3-三氯丙烷	1.2μg/kg		<1.2	<1.2	1	1	1
1,4-二氯苯	1.5µg/kg	_	<1.5	<1.5	1	/	/
1,2-二氯苯	1.5µg/kg		<1.5	<1.5	/	/	/
氯甲烷	1.0µg/kg		<1.0	<1.0	1	1	1
氯乙烯	1.0µg/kg		<1.0	<1.0	1	1	1
1,1-二氯乙烯	1.0µg/kg		<1.0	<1.0	/	/	1
二氯甲烷	1.5µg/kg		<1.5	<1.5	/	/	/
反式-1,2-二氯乙烯	1.4µg/kg		<1.4	<1.4	1	1	1
1,1-二氯乙烷	1.2µg/kg		<1.2	<1.2	/	1	1
顺式 1,2-二氯乙烯	1.3µg/kg		<1.3	<1.3	/	/	/
氯仿	1.1µg/kg		<1.1	<1.1	1	1	/
1,1,1-三氯乙烷	1.3µg/kg		<1.3	<1.3	1	1	1
四氯化碳	1.3µg/kg		<1.3	<1.3	1	1	/
1,2-二氯乙烷	1.3µg/kg		<1.3	<1.3	/	/	/
苯	1.9µg/kg		<1.9	<1.9	1	1	1
三氯乙烯	1.2µg/kg	RBS2210020- 1025-T-10-1	<1.2	<1.2	/	1	1
1,2-二氯丙烷	1.1µg/kg		<1.1	<1.1	/	/	/
甲苯	1.3µg/kg		<1.3	<1.3	1	1	1
1,1,2-三氯乙烷	1.2µg/kg		<1.2	<1.2	1	1	1
四氯乙烯	1.4µg/kg		<1.4	<1.4	/	1	1
氯苯	1.2µg/kg		<1.2	<1.2	1	/	/
1,1,1,2-四氯乙烷	1.2µg/kg		<1.2	<1.2	/	/	1
乙苯	1.2µg/kg		<1.2	<1.2	1	/	1
间,对-二甲苯	1.2µg/kg		<1.2	<1.2	/	/	1
邻-二甲苯	1.2µg/kg		<1.2	<1.2	1	/	1
苯乙烯	1.1µg/kg	-	<1.1	<1.1	1	1	/
1,1,2,2-四氯乙烷	1.2µg/kg		<1.2	<1.2	/	1	1
1,2,3-三氯丙烷	1.2µg/kg		<1.2	<1.2	/	1	/

1,2-二氯苯 铜 锰 钴 镍 镉 铅	1.5µg/kg 0.5 mg/kg 0.7 mg/kg 0.03 mg/kg 2 mg/kg 0.07 mg/kg 0.07 mg/kg 0.5 mg/kg 0.7 mg/kg	RBS2210020- 1026-T-8-1	<1.5 25.9 704 10.4 19 0.60	<1.5 25.8 703 10.4 18	0.2 0.1 0.0 2.7 0.8	30 30 30 30 30	/ 合格 合格 合格
锰 钴 镍 镉 铅	0.7 mg/kg 0.03 mg/kg 2 mg/kg 0.07 mg/kg 2 mg/kg 0.5 mg/kg		704 10.4 19 0.60	703 10.4 18	0.1 0.0 2.7	30 30 30	合格合格
钴 镍 镉 铅	0.03 mg/kg 2 mg/kg 0.07 mg/kg 2 mg/kg 0.5 mg/kg		10.4 19 0.60	10.4	0.0	30	合格
镍 镉 铅 铜	2 mg/kg 0.07 mg/kg 2 mg/kg 0.5 mg/kg		19 0.60	18	2.7	30	
領 铅 铜	0.07 mg/kg 2 mg/kg 0.5 mg/kg	1026-T-8-1	0.60	1000000		0.000	合格
铅铜	2 mg/kg 0.5 mg/kg			0.61	0.8	1,111	
铜	0.5 mg/kg		41	1	0.0	40	合格
			41	41	0.0	30	合格
锰	0.7 mg/kg	_	13.8	13.8	0.0	30	合格
			730	700	2.1	30	合格
钴	0.03 mg/kg	RBS2210020-	8.37	8.33	0.2	30	合格
镍	2 mg/kg	1024-T-9-1	13	13	0.0	30	合格
镉	0.07 mg/kg		0.28	0.29	1.8	40	合格
铅	2 mg/kg		39	39	0.0	30	合格
铜	0.5 mg/kg		13.4	13.2	0.8	30	合格
锰	0.7 mg/kg	RBS2210020- 1025-T-10-1	203	197	1.5	30	合格
钴	0.03 mg/kg		10.6	10.4	1.0	30	合格
镍	2 mg/kg		12	12	0.0	30	合格
镉	0.07 mg/kg		0.14	0.13	3.7	40	合格
铅	2 mg/kg		29	30	1.7	30	合格
六价铬	0.5mg/kg	RBS2210020- 1026-T-8-1	1.3	1.3	0.0	20	合格
六价铬	0.5mg/kg	RBS2210020- 1024-T-9-1	1.4	1.4	0.0	20	合格
六价铬	0.5mg/kg	RBS2210020- 1025-T-10-1	1.5	1.6	3.2	20	合格
铊	0.1mg/kg	RBS2210020-	< 0.1	<0.1	1	1	/
铊	0.1mg/kg	1026-T-8-1 RBS2210020-	<0.1	<0.1	/	1	/
铊	0.1mg/kg	1024-T-9-1 RBS2210020-	< 0.1	<0.1	/	/	/
水溶性氟化物	0.7 mg/kg	1025-T-10-1 RBS2210020-	7.6	8.4	5.0	20	合格
水溶性氟化物	0.7 mg/kg	1026-T-8-1 RBS2210020-	10.2	11.0	3.8	20	合格
水溶性氟化物	0.7 mg/kg	1024-T-9-1 RBS2210020-	1.4	1.7	9.7	20	合格
汞	0.002mg/kg	1025-T-10-1	0.106	0.101	2.4	12	合格
砷	0.002mg/kg	RBS2210020- 1026-T-8-1	3.90	3.85	0.6	7	合格

锑	0.01mg/kg		0.514	0.452	6.4	10	合格
汞	0.002mg/kg		7.65×10^{-2}	8.08×10 ⁻²	2.7	12	合格
砷	0.01mg/kg	RBS2210020- 1024-T-9-1	6.04	6.18	1.1	7	合格
锑	0.01mg/kg		<1.00×10 ⁻²	<1.00×10 ⁻²	/	/	1
汞	0.002mg/kg		0.122	0.117	2.1	12	合格
砷	0.01mg/kg	RBS2210020- 1025-T-10-1	2.84	2.83	0.2	7	合格
锑	0.01mg/kg		1.61	1.58	1.0	10	合格
石油烃	6 mg/kg	RBS2210020- 1026-T-8-1	43	43	0.0	25	合格
石油烃	6 mg/kg	RBS2210020- 1024-T-9-1	59	54	4.0	25	合格
石油烃	6 mg/kg	RBS2210020- 1025-T-10-1	27	27	0.0	25	合格

5.4 空白样品试验

空白样品分析测试结果一般应低于方法检出限或测定下限。若空白样品分析测试结果高于样品检出限,应查找原因并采取适当的纠正和预防措施,并重新对样品进行测试分析。

表 5-7 地下水空白样统计

检测项目	检测结果				
位测坝日	实验室空白1	实验室空白2	全程序空白		
阴离子表面活性剂	<0.05 mg/L	<0.05 mg/L	<0.05 mg/L		
硫化物	<0.003 mg/L	<0.003 mg/L	<0.003 mg/L		
氨氮	A≤0.030	A≤0.030	<0.025 mg/L		
总硬度	/	/	<5 mg/L		
氟化物	<0.006 mg/L	<0.006 mg/L	<0.006 mg/L		
氯化物	<0.007 mg/L	<0.007 mg/L	<0.007 mg/L		
硝酸盐氮	<0.004 mg/L	<0.004 mg/L	<0.004 mg/L		
硫酸根 <0.018 mg/L		<0.018 mg/L	<0.018 mg/L		
挥发酚	<0.0003 mg/L	<0.0003 mg/L	<0.0003 mg/L		
氰化物	<0.004 mg/L	<0.004 mg/L	<0.004 mg/L		
总磷	<0.01 mg/L	<0.01 mg/L	<0.01 mg/L		
亚硝酸盐氮	<0.003 mg/L	<0.003 mg/L	<0.003 mg/L		
汞	<4.00×10 ⁻⁵ mg/L	<4.00×10 ⁻⁵ mg/L	<4.00×10 ⁻⁵ mg/L		
砷	<3.00×10 ⁻⁴ mg/L	<3.00×10 ⁻⁴ mg/L	<3.00×10 ⁻⁴ mg/L		
硒	<4.00×10 ⁻⁴ mg/L	<4.00×10 ⁻⁴ mg/L	<4.00×10 ⁻⁴ mg/L		
锑	<2.00×10 ⁻⁴ mg/L	<2.00×10 ⁻⁴ mg/L	<2.00×10 ⁻⁴ mg/L		

铍	<4.00×10 ⁻⁵ mg/L	<4.00×10 ⁻⁵ mg/L	<4.00×10 ⁻⁵ mg/L
铝	<1.15×10 ⁻³ mg/L	<1.15×10 ⁻³ mg/L	<1.15×10 ⁻³ mg/L
铬	<1.10×10 ⁻⁴ mg/L	<1.10×10 ⁻⁴ mg/L	<1.10×10 ⁻⁴ mg/L
锰	<1.20×10 ⁻⁴ mg/L	<1.20×10 ⁻⁴ mg/L	<1.20×10 ⁻⁴ mg/L
铁	<8.20×10 ⁻⁴ mg/L	<8.20×10 ⁻⁴ mg/L	<8.20×10 ⁻⁴ mg/L
镍	<6.00×10 ⁻⁵ mg/L	<6.00×10 ⁻⁵ mg/L	<6.00×10 ⁻⁵ mg/L
铜	<8.00×10 ⁻⁵ mg/L	<8.00×10 ⁻⁵ mg/L	<8.00×10 ⁻⁵ mg/L
锌	<6.70×10 ⁻⁴ mg/L	<6.70×10 ⁻⁴ mg/L	<6.70×10 ⁻⁴ mg/L
镉	<5.00×10 ⁻⁵ mg/L	<5.00×10 ⁻⁵ mg/L	<5.00×10 ⁻⁵ mg/L
铅	<9.00×10 ⁻⁵ mg/L	<9.00×10 ⁻⁵ mg/L	<9.00×10 ⁻⁵ mg/L
钴	<3.00×10 ⁻⁵ mg/L	<3.00×10 ⁻⁵ mg/L	<3.00×10 ⁻⁵ mg/L
铊	<2.00×10 ⁻⁵ mg/L	<2.00×10 ⁻⁵ mg/L	<2.00×10 ⁻⁵ mg/L
总大肠菌群	<2MPN/100mL	<2MPN/100mL	<2MPN/100mL
菌落总数	未检出	未检出	未检出
六价铬	<0.004 mg/L	<0.004 mg/L	<0.004 mg/L
钠	<0.12 mg/L	<0.12 mg/L	<0.12 mg/L
氯仿	<1.4μg/L	<1.4μg/L	<1.4μg/L
四氯化碳	<1.5μg/L	<1.5μg/L	<1.5μg/L
苯	<1.4μg/L	<1.4μg/L	<1.4μg/L
甲苯	<1.4μg/L	<1.4μg/L	<1.4μg/L

表 5-8 土壤空白样统计

检测项目	检测结果					
位侧切り	实验室空白1	实验室空白 2	全程序空白	运输空白		
铜 (mg/kg)	<2.0 (测定下限)	<2.0 (测定下限)	/	/		
锰 (mg/kg)	<2.8 (测定下限)	<2.8 (测定下限)	/	/		
钴 (mg/kg)	<0.12 (测定下限)	<0.12 (测定下限)	/	/		
镍(mg/kg)	<8 (测定下限)	<8 (测定下限)	/	/		
镉 (mg/kg)	<0.28 (测定下限)	<0.28 (测定下限)	/	/		
铅 (mg/kg)	<8 (测定下限)	<8 (测定下限)	/	/		
六价铬 (mg/kg)	<0.5	<0.5	1	1		
铊 (mg/kg)	< 0.1	< 0.1	/	/		
水溶性氟化物 (mg/kg)	< 0.7	< 0.7	/	/		

				r
汞(mg/kg)	< 0.002	< 0.002	/	/
砷 (mg/kg)	< 0.01	< 0.01	/	/
锑(mg/kg)	< 0.01	< 0.01	/	/
石油烃(mg/kg)	<6	<6	/	/
苯胺(mg/kg)	< 0.03	< 0.03	< 0.03	< 0.03
2-氯苯酚 (mg/kg)	< 0.06	< 0.06	< 0.06	< 0.06
硝基苯(mg/kg)	< 0.09	< 0.09	< 0.09	< 0.09
萘(mg/kg)	< 0.09	< 0.09	< 0.09	< 0.09
苯并(a)蒽 (mg/kg)	< 0.1	< 0.1	< 0.1	< 0.1
䓛(mg/kg)	< 0.1	< 0.1	< 0.1	< 0.1
苯并(b) 荧蒽 (mg/kg)	< 0.2	< 0.2	< 0.2	<0.2
苯并(k)荧蒽 (mg/kg)	< 0.1	< 0.1	< 0.1	<0.1
苯并(a)芘 (mg/kg)	< 0.1	< 0.1	< 0.1	<0.1
茚并(1,2,3-cd) 芘(mg/kg)	< 0.1	< 0.1	< 0.1	< 0.1
二苯并(ah)蒽 (mg/kg)	< 0.1	< 0.1	< 0.1	<0.1
氯甲烷(μg/kg)	<1.0	<1.0	<1.0	<1.0
氯乙烯(μg/kg)	<1.0	<1.0	<1.0	<1.0
1,1-二氯乙烯 (μg/kg)	<1.0	<1.0	<1.0	<1.0
二氯甲烷 (µg/kg)	<1.5	<1.5	<1.5	<1.5
反式-1,2-二氯乙烯 (μg/kg)	<1.4	<1.4	<1.4	<1.4
1,1-二氯乙烷 (μg/kg)	<1.2	<1.2	<1.2	<1.2
顺式 1,2-二氯乙烯 (μg/kg)	<1.3	<1.3	<1.3	<1.3
氯仿(μg/kg)	<1.1	<1.1	<1.1	<1.1
1,1,1-三氯乙烷 (μg/kg)	<1.3	<1.3	<1.3	<1.3
四氯化碳 (μg/kg)	<1.3	<1.3	<1.3	<1.3
1,2-二氯乙烷 (μg/kg)	<1.3	<1.3	<1.3	<1.3
苯(μg/kg)	<1.9	<1.9	<1.9	<1.9
三氯乙烯 (µg/kg)	<1.2	<1.2	<1.2	<1.2

1,2-二氯丙烷 (μg/kg)	<1.1	<1.1	<1.1	<1.1
甲苯 (μg/kg)	<1.3	<1.3	<1.3	<1.3
1,1,2-三氯乙烷 (μg/kg)	<1.2	<1.2	<1.2	<1.2
四氯乙烯 (μg/kg)	<1.4	<1.4	<1.4	<1.4
氯苯(μg/kg)	<1.2	<1.2	<1.2	<1.2
1,1,1,2-四氯乙烷 (μg/kg)	<1.2	<1.2	<1.2	<1.2
乙苯(μg/kg)	<1.2	<1.2	<1.2	<1.2
间,对-二甲苯 (μg/kg)	<1.2	<1.2	<1.2	<1.2
邻-二甲苯 (μg/kg)	<1.2	<1.2	<1.2	<1.2
苯乙烯(μg/kg)	<1.1	<1.1	<1.1	<1.1
1,1,2,2-四氯乙烷 (μg/kg)	<1.2	<1.2	<1.2	<1.2
1,2,3-三氯丙烷 (μg/kg)	<1.2	<1.2	<1.2	<1.2

六、质控结论

本项目现场采样、现场检测、实验分析及质量控制均按照《地下水环境监测技术规范》(HJ/T 164-2004)、《土壤环境监测技术规范》(HJ/T 166-2004)和《浙江省环境监测质量保证技术规定》(第三版试行)等相关标准执行。

本项目现场采样、现场检测、样品保存、流转、前处理、实验室检测分析、质量控制均符合相关标准 及规范的要求,采用分析仪器使用前后校准、标准物质、加标回收、平行样等质控手段对数据的准确度、 精密度进行控制。各项质控数据均符合规范要求,本项目检测结果准确可靠。